
CLC number: TP391.4; E917
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-20
Cited: 0
Clicked: 7732
Zong-feng Qi, Qiao-qiao Liu, Jun Wang, Jian-xun Li. Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601395 @article{title="Battle damage assessment based on an improved Kullback-Leibler divergence sparse autoencoder", %0 Journal Article TY - JOUR
基于改进Kullback-Leibler散度稀疏自动编码机的战损评估关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cao, S.C., Zhang, F., 2014. Review of battle damage assessment. Mil. Econ. Res., (8):53-56 (in Chinese). ![]() [2]Chen, X., Li, L., Liu, D., 2011. Battle damage level prediction on fuzzy theory and Bayesian method. IEEE Conf. on Robotics, Automation and Mechatronics, p.295-298. ![]() [3]Ding, Y., Li, N., Zhao, Y., et al., 2016. Image quality assessment method based on nonlinear feature extraction in kernel space. Front. Inform. Technol. Electron. Eng., 17(10):1008-1017. ![]() [4]Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. Springer, New York, USA. ![]() [5]Hosmer, D.W., Lemeshow, S., 2005. Applied Logistic Regression. John Wiley & Sons, New York, USA. ![]() [6]Hubel, D.H., Wiesel, T.N., 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106-154. ![]() [7]Jensen, F.V., Nielsen, T.D., 2007. Bayesian Networks and Decision Graphs. Springer, New York, USA. ![]() [8]Jiang, N., Rong, W.G., Peng, B.L., et al., 2015. An empirical analysis of different sparse penalties for autoencoder in unsupervised feature learning. Int. Joint Conf. on Neural Networks, p.1-8. ![]() [9]Li, C.H., Huang, J., 2014. The application of Bayesian network in battle damage assessment. IEEE Int. Conf. on Software Engineering and Service Science, p.529-532. ![]() [10]Ma, X.M., Ding, P., Yan, W.D., 2016. Warship-damage assessment based on Bayesian networks. Ordnance Ind. Autom., 35(6):72-75 (in Chinese). ![]() [11]Ma, Z.J., Shi, Q., Li, B., 2007. Battle damage assessment based on Bayesian network. 8th ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, p.388-391. ![]() [12]Qin, F.W., Li, L.Y., Gao, S.M., et al., 2014. A deep learning approach to the classification of 3D CAD models. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2):91-106. ![]() [13]Rifai, S., Vincent, P., Muller, X., et al., 2011. Contractive auto-encoders: explicit invariance during feature extraction. 28th Int. Conf. on Machine Learning, p.833-840. ![]() [14]Seber, G.A.F., Lee, A.J., 2012. Linear Regression Analysis. John Wiley & Sons, New York, USA. ![]() [15]Song, G.H., Jin, X.G., Chen, G.L., et al., 2016. Two-level hierarchical feature learning for image classification. Front. Inform. Technol. Electron. Eng., 17(9):897-906. ![]() [16]Sun, G.L., Li, J., 2016. Battle damage assessment based on attribute weighted Bayesian classification. Ship Electron. Eng., 36(1):29-32 (in Chinese). ![]() [17]Vens, C., Struyf, J., Schietgat, L., et al., 2008. Decision trees for hierarchical multi-label classification. Mach. Learn., 73:185-214. ![]() [18]Vincent, P., Larochelle, H., Lajoie, I., et al., 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11(12):3371-3408. ![]() [19]Wen, M.F., Hu, C., Liu, W.R., 2016. Heterogeneous multimodal object recognition method based on deep learning. J. Cent. South Univ. (Sci. Technol.), 47(5):1580-1586 (in Chinese). ![]() [20]Yong, L.Y., 2004. Modeling in Battle Damage Based on Multi-agent. MS Thesis, Harbin University of Science and Technology, Harbin, China (in Chinese). ![]() [21]Zhang, C., Shi, Q., Liu, T.L., et al., 2012. Study on battle damage level prediction using hybrid-learning algorithm. 4th Int. Conf. on Computational and Information Sciences, p.65-68. ![]() [22]Zhao, Z.Y., Li, Y.X., Yu, F., et al., 2015. Improved deep learning algorithm based on extreme learning machine. Comput. Eng. Des., 36(4):1022-1026 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>