
CLC number: TN911.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-20
Cited: 0
Clicked: 11342
Ruo-yu Zhang, Hong-lin Zhao, Shao-bo Jia. Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1601635 @article{title="Compressed sensing-based structured joint channel estimation in a multi-user massive MIMO system", %0 Journal Article TY - JOUR
多用户大规模MIMO系统中基于压缩感知的结构化联合信道估计关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Barbotin, Y., Hormati, A., Rangan, S., et al., 2012. Estimation of sparse MIMO channels with common support. IEEE Trans. Commun., 60(12):3705-3716. ![]() [2]Baum, D.S., Hansen, J., Salo, J., 2005. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). IEEE 61st Vehicular Technology Conf., p.3132-3136. ![]() [3]Berger, C.R., Wang, Z.H., Huang, J.Z., et al., 2010. Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag., 48(11):164-174. ![]() [4]Björnson, E., Larsson, E.G., Marzetta, T.L., 2015. Massive MIMO: ten myths and one critical question. IEEE Commun. Mag., 54(2):114-123. ![]() [5]Bogale, T.E., Vandendorpe, L., Chalise, B.K., 2012. Robust transceiver optimization for downlink coordinated base station systems: distributed algorithm. IEEE Trans. Signal Process., 60(1):337-350. ![]() [6]Chen, Y., Qin, Z., 2015. Gradient-based compressive image fusion. Front. Inform. Technol. Electron. Eng., 16(3):227-237. ![]() [7]Choi, J., Love, D.J., Bidigare, P., 2014. Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE J. Sel. Top. Signal Process., 8(5):802-814. ![]() [8]Dai, L.L., Wang, J.T., Wang, Z.C., et al., 2013. Spectrum-and energy-efficient OFDM based on simultaneous multi-channel reconstruction. IEEE Trans. Signal Process., 61(23):6047-6059. ![]() [9]Dai, W., Milenkovic, O., 2009. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory, 55(5):2230-2249. ![]() [10]Dasgupta, S., Gupta, A., 2003. An elementary proof of a theorem of Johnson and Lindenstrauss. Rand. Struct. Algor., 22(1):60-65. ![]() [11]Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306. ![]() [12]Eldar, Y.C., Kuppinger, P., Bölcskei, H., 2010. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process., 58(6):3042-3054. ![]() [13]Gao, X., Edfors, O., Rusek, F., et al., 2011. Linear pre-coding performance in measured very-large MIMO channels. IEEE Vehicular Technology Conf., p.1-5. ![]() [14]Gao, Z., Dai, L.L., Wang, Z., 2014. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron. Lett., 50(12):896-898. ![]() [15]Gao, Z., Dai, L.L., Wang, Z., et al., 2015. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans. Signal Process., 63(23):6169-6183. ![]() [16]Gao, Z., Dai, L.L., Dai, W., et al., 2016. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Trans. Commun., 64(2):601-617. ![]() [17]Hoydis, J., Hoek, C., Wild, T., et al., 2012. Channel measurements for large antenna arrays. IEEE Int. Symp. on Wireless Communication Systems, p.811-815. ![]() [18]Hoydis, J., Ten Brink, S., Debbah, M., 2013. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need IEEE J. Sel. Areas Commun., 31(2):160-171. ![]() [19]Hu, D., Wang, X.D., He, L.H., 2013. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Trans. Veh. Technol., 62(9):4648-4653. ![]() [20]Ketonen, J., Juntti, M., Cavallaro, J.R., 2010. Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Trans. Signal Process., 58(6): 3360-3372. ![]() [21]Lee, B., Choi, J., Seol, J.Y., et al., 2015. Antenna grouping based feedback compression for FDD-based massive MIMO systems. IEEE Trans. Commun., 63(9):3261-3274. ![]() [22]Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process., 8(5):742-758. ![]() [23]Noh, S., Zoltowski, M.D., Sung, Y., et al., 2014. Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE J. Sel. Top. Signal Process., 8(5):787-801. ![]() [24]Qi, C.H., Wu, L.N., 2014. Uplink channel estimation for massive MIMO systems exploring joint channel sparsity. Electron. Lett., 50(23):1770-1772. ![]() [25]Rao, X.B., Lau, V.K.N., 2014. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans. Signal Process., 62(12): 3261-3271. ![]() [26]Tropp, J.A., Gilbert, A.C., 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655-4666. ![]() [27]Tropp, J.A., Gilbert, A.C., Strauss, M.J., 2006. Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process., 86(3):572-588. ![]() [28]Tse, D., Viswanath, P., 2005. Fundamentals of Wireless Communication. Cambridge University Press, New York, p.309-330. ![]() [29]Yin, H.F., Gesbert, D., Filippou, M., et al., 2012. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun., 31(2): 264-273. ![]() [30]Zhang, Z.Y., Teh, K.C., Li, K.H., 2014. Application of compressive sensing to limited feedback strategy in large-scale multiple-input single-output cellular networks. IET Commun., 8(6):947-955. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


Open peer comments: Debate/Discuss/Question/Opinion
<1>