
CLC number: O441.1; TN711.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-17
Cited: 0
Clicked: 8505
Zhi-zhong Tan, Hong Zhu, Jihad H. Asad, Chen Xu, Hua Tang. Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1700037 @article{title="Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary", %0 Journal Article TY - JOUR
含有任意边界的m×n阶RLC网络的等效复阻抗特性关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6):1177-1182. ![]() [2]Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15):1350112. ![]() [3]Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128:2. ![]() [4]Bao, A., Tao, H.S., Liu, H.D., et al., 2014. Quantum magnetic phase transition in square-octagon lattice. Sci. Rep., 4:6918. ![]() [5]Baule, A., Mari, R., Bo, L., et al., 2013. Mean-field theory of random close packings of axisymmetric particles. Nat. Commun., 4:2194. ![]() [6]Bianco, B., Giordano, S., 2003. Electrical characterization of linear and non-linear random networks and mixtures. Int. J. Circ. Theory Appl., 31(2):199-218. ![]() [7]Chair, N., 2012. Exact two-point resistance, and the simple random walk on the complete graph minus N edges. Ann. Phys., 327(12):3116-3129. ![]() [8]Chair, N., 2014a. The effective resistance of the N-cycle graph with four nearest neighbors. J. Stat. Phys., 154(4):1177-1190. ![]() [9]Chair, N., 2014b. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory. Ann. Phys., 341:56-76. ![]() [10]Chamberlin, R.V., 2000. Mean-field cluster model for the critical behaviour of ferromagnets. Nature, 408:337-339. ![]() [11]Chitra, R., Kotliar, G., 2000. Dynamical mean-field theory and electronic structure calculations. Phys. Rev. B, 62:12715. ![]() [12]Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10):896-906. ![]() [13]Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3):032130. ![]() [14]Essam, J.W., Izmailyan, N.S., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2:140420. ![]() [15]Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786):499-502. ![]() [16]Georges, A., Kotliar, G., Krauth, W., et al., 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68(1):13-125. ![]() [17]Giordano, S., 2005. Disordered lattice networks: general theory and simulations. Int. J. Circ. Theory Appl., 33(6): 519-540. ![]() [18]Haule, K., 2007. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B, 75(15):155113. ![]() [19]Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M by N resistor network. Phys. Rev. E, 82(1):011125. ![]() [20]Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theory Exp., 2014(9):09016. ![]() [21]Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3): 035003. ![]() [22]Kirchhoff, G., 1847. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys., 148(12):497-508 (in German). ![]() [23]Kirkpatrick, S., 1973. Percolation and conduction. Rev. Mod. Phys., 45(4):574-588. ![]() [24]Klein, D.J., Randić, M., 1993. Resistance distance. J. Math. Chem., 12(1):81-95. ![]() [25]Tan, Z.Z., 2011. Resistance Network Moder. Xidian University Press, Xi’an, China, p.28-146 (in Chinese). ![]() [26]Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2):020503. ![]() [27]Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5):052122. ![]() [28]Tan, Z.Z., 2015c. Recursion-transform method to a non-regular m×n cobweb with an arbitrary longitude. Sci. Rep., 5:11266. ![]() [29]Tan, Z.Z., 2017. Two-point resistance of a non-regular cylindrical network with a zero resistor axis and two arbitrary boundaries. Commun. Theor. Phys., 67(3):280-288. ![]() [30]Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Commun. Theor. Phys., 63(1):36-44. ![]() [31]Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theory Appl., 43(7):944-958. ![]() [32]Tan, Z.Z., Zhang, Q.H., 2017. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method. Acta Phys. Sin., 66(7):070501 (in Chinese). ![]() [33]Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46:195202. ![]() [34]Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1):012130. ![]() [35]Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A: Math. Gen., 39(27):8579-8591. ![]() [36]Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 53(1):405-413. ![]() [37]Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26):6653-6673. ![]() [38]Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4):284-289. ![]() [39]Zhou, L., Tan, Z.Z., Zhang, Q.H., 2017. A fractional-order multifunctional n-step honeycomb RLC circuit network. Front. Inform. Technol. Electron. Eng., 18(8):1186-1196. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>