CLC number: TN24
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-04-11
Cited: 0
Clicked: 6456
Yu Liu, Hao-tian Bao, Yi-ming Zhang, Zhi-ke Zhang, Yun-shan Zhang, Xiang-fei Chen, Jun Lu, Yue-chun Shi, Jia-shun Zhang, Liang-liang Wang, Jun-ming An, Ning-hua Zhu. 1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800371 @article{title="1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA", %0 Journal Article TY - JOUR
1.3-µm 4×25-Gb/s混合集成收发光子组件关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Baek Y, Han YT, Lee CW, et al., 2012. Optical components for 100G ethernet transceivers. Proc 17th Opto- Electronics and Communications Conf, p.218-219. ![]() [2]Dai HQ, An JM, Wang Y, et al., 2014. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate. J Semicond, 35(10):104010. ![]() [3]Dai YT, Chen XF, 2007. DFB semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Expr, 15(5):2348-2353. ![]() [4]Doi Y, Oguma M, Yoshimatsu T, et al., 2015. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s Ethernet. J Lightw Technol, 33(15):3286- 3292. ![]() [5]Dong P, Liu X, Chandrasekhar S, et al., 2014. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quant Electr, 20(4):150-157. ![]() [6]Kanazawa S, Kobayashi W, Ueda Y, et al., 2016. 30-km error- free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gb application. J Lightw Technol, 34(15):3646-3652. ![]() [7]Kang SK, Lee JK, Lee JC, et al., 2010. A compact 4×10-Gb/s CWDM ROSA module for 40G Ethernet optical transceiver. Proc 60th Electronic Components and Technology Conf, p.2001-2005. ![]() [8]Li CY, An JM, Zhang JS, et al., 2018. 4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies. Chin Opt Lett, 16(6):060603. ![]() [9]Machado LM, Delrosso G, Borin F, et al., 2014. Advanced optical communication systems and devices. Proc 5th Electronics System-Integration Technology Conf, p.1-4. ![]() [10]Ohyama T, Doi Y, Kobayashi W, et al., 2016. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer. J Lightw Technol, 34(3):1038-1046. ![]() [11]Zhang YS, Liu Y, Lu J, et al., 2017. DFB laser arrays based on the REC technique and their applications in radio-over- fiber systems. Chin Opt Lett, 15(1):010005. ![]() [12]Zhang ZK, Liu Y, An JM, et al., 2018. 112 Gbit/s transmitter optical subassembly based on hybrid integrated directly modulated lasers. Chin Opt Lett, 16(6):062501. ![]() [13]Zhao ZP, Liu Y, Zhang ZK, et al., 2016. 1.5μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application. Chin Opt Lett, 14(12):45-49. ![]() [14]Zhong KP, Zhou X, Huo JH, et al., 2017. Amplifier-less transmission of single channel 112 Gbit/s PAM4 signal over 40km using 25G EML and APD at O band. Proc European Conf on Optical Communication, p.1-3. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>