CLC number: TB13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-04-11
Cited: 0
Clicked: 5986
Wen-hua Shi, Wei-ming Lv, Tian-yu Sun, Bao-shun Zhang. Optoelectronic platform and technology[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800451 @article{title="Optoelectronic platform and technology", %0 Journal Article TY - JOUR
光电子平台与工艺技术关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Asghari M, Krishnamoorthy AV, 2011. Energy-efficient communication. Nat Photon, 5(5):268-270. ![]() [2]Atabaki AH, Moazeni S, Pavanello F, et al., 2018. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556(7701):349-354. ![]() [3]Bayindir M, Sorin F, Abouraddy AF, et al., 2004. Metal- insulator-semiconductor optoelectronic fibres. Nature, 431(7010):826-829. ![]() [4]Bogaerts W, Chrostowski L, 2018. Silicon photonics circuit design: methods, tools and challenges. Laser Photon Rev, 12(4):1700237. ![]() [5]Cai Y, Han ZH, Wang XX, et al., 2013. Analysis of threshold current behavior for bulk and quantum-well germanium laser structures. IEEE J Sel Top Quant Electr, 19(4): 1901009. ![]() [6]Cardoso JC, Grimes CA, Feng XJ, et al., 2012. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem Commun, 48(22):2818-2820. ![]() [7]Chen L, Sohdi A, Bowers JE, et al., 2013. Electronic and photonic integrated circuits for fast data center optical circuit switches. IEEE Commun Mag, 51(9):53-59. ![]() [8]Cui Z, 2005. Micro-Nanofabrication Technologies and Applications. Higher Education Press, Beijing, China (in Chinese). ![]() [9]Forrest SR, 2004. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986): 911-918. ![]() [10]Gunn C, 2006. CMOS photonics for high-speed interconnects. IEEE Micro, 26(2):58-66. ![]() [11]Haney MW, 2013. How will photonic integrated circuits develop? Proc SPIE 8629, Silicon Photonics VIII, p.86290L. ![]() [12]Heck MJR, Bauters JF, Davenport ML, et al., 2013. Hybrid silicon photonic integrated circuit technology. IEEE J Sel Top Quant Electr, 19(4):6100117. ![]() [13]Heung CH, Stoykovich MP, Song JZ, et al., 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205):748-753. ![]() [14]Jeong JW, McCall JG, Shin G, et al., 2015. Wireless opto- fluidic systems for programmable in vivo pharmacology and optogenetics. Cell, 162(3):662-674. ![]() [15]Kim RH, Kim DH, Xiao JL, et al., 2010. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 9(11): 929-937. ![]() [16]Kim TI, McCall JG, Jung YH, et al., 2013. Injectable, cellular- scale optoelectronics with applications for wireless optogenetics. Science, 340(6129):211-216. ![]() [17]Ko HC, Stoykovich MP, Song JZ, et al., 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205):748-753. ![]() [18]Lee HW, Schmidt MA, Russell RF, et al., 2011. Pressure- assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt Expr, 19(13): 12180-12189. ![]() [19]Li M, Chen XF, Su YK, et al., 2016. Photonic integration circuits in China. IEEE J Quant Electr, 52(1):0601017. ![]() [20]Liang D, Bowers JE, 2008. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 26(4):1560. ![]() [21]Lu LY, Gutruf P, Xia L, et al., 2018. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc Nat Acad Sci USA, 115(7):E1374- E1383. ![]() [22]Nomura K, Ohta H, Takagi A, et al., 2004. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016):488-492. ![]() [23]Ostendorf R, Kaufel G, Moritz R, et al., 2008. 10 W high- efficiency high-brightness tapered diode lasers at 976 nm. Proc SPIE 6876, High-Power Diode Laser Technology and Applications VI, p.68760H. ![]() [24]Park SI, Ahn JH, Feng X, et al., 2008. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 18(18): 2673-2684. ![]() [25]Salimpoor VN, van den Bosch I, Kovacevic N, et al., 2003. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129): 216-219. ![]() [26]Sazio PJA, Amezcua-Correa A, Finlayson CE, et al., 2006. Microstructured optical fibers as high-pressure micro- fluidic reactors. Science, 311(5767):1583-1586. ![]() [27]Sparks JR, Sazio PJA, Gopalan V, et al., 2013. Templated chemically deposited semiconductor optical fiber materials. Ann Rev Mater Res, 43:527-557. ![]() [28]Vivien L, Osmond J, Fédéli JM, 2009. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Expr, 17(8):6252-6257. ![]() [29]Wang ZB, Helander MG, Qiu J, et al., 2011. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat Photon, 5(12):753-757. ![]() [30]Yan W, Qu YP, Gupta TD, et al., 2017. Semiconducting nanowire-based optoelectronic fibers. Adv Mater, 29(27): 1700681. ![]() [31]Yan W, Page A, Nguyen-Dang T, et al., 2018. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater, 31(1):1802348. ![]() [32]Yang DR, 2016. Silicon Based Photoluminescence Materials and Devices. Science Press, Beijing, China (in Chinese). ![]() [33]Yu JZ, Chen SW, Xia JS, et al., 2005. Research progresses of SOI optical waveguide devices and integrated optical switch matrix. Sci China Ser F, 48(2):234-246. ![]() [34]Yuan LJ, Tao L, Chen WX, et al., 2015. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photon Technol Lett, 27(4):352-355. ![]() [35]Zhai RH, 2009. Novel photoelectron elements and technologies to support ROF. ZTE Commun, 15(3):11-16 (in Chinese). ![]() [36]Zhu NH, Li M, Hao Y, 2016. Optoelectronic devices and integration technologies. Sci Sin Inform, 46(8):1156-1174 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>