CLC number: TP242
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-03-14
Cited: 0
Clicked: 8060
Seulki Kyeong, Wonseok Shin, Minjin Yang, Ung Heo, Ji-rou Feng, Jung Kim. Recognition of walking environments and gait period by surface electromyography[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1800601 @article{title="Recognition of walking environments and gait period by surface electromyography", %0 Journal Article TY - JOUR
基于表面肌电信号的行走环境与步态周期识别关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cifrek M, Medved V, Tonković S, et al., 2009. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech, 24(4):327-340. ![]() [2]Colombo G, Joerg M, Schreier R, et al., 2000. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev, 37(6):693-700. ![]() [3]Dotov DG, Bardy BG, Dalla Bella S, 2016. The role of environmental constraints in walking: effects of steering and sharp turns on gait dynamics. Sci Rep, 6:28374. ![]() [4]Du L, Zhang F, Liu M, et al., 2012. Toward design of an environment-aware adaptive locomotion-mode-recogni- tion system. IEEE Trans Biomed Eng, 59(10): 2716-2725. ![]() [5]Esquenazi A, Talaty M, Packel A, et al., 2012. The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11):911-921. ![]() [6]Farrell MT, 2013. Pattern Classification of Terrain during Amputee Walking. PhD Thesis, Massachusetts Institute of Technology, Massachusetts, USA. ![]() [7]Goršič M, Kamnik R, Ambrožič L, et al., 2014. Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors, 14(2):2776-2794. ![]() [8]Guizzo E, Goldstein H, 2005. The rise of the body bots [robotic exoskeletons]. IEEE Spectr, 42(10):50-56. ![]() [9]Gupta R, Agarwal R, 2018. Continuous human locomotion identification for lower limb prosthesis control. CSI Trans ICT, 6(1):17-31. ![]() [10]Huang H, Kuiken TA, Lipschutz RD, 2009. A strategy for identifying locomotion modes using surface electromyo- graphy. IEEE Trans Biomed Eng, 56(1):65-73. ![]() [11]Huang H, Zhang F, Hargrove LJ, et al., 2011. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans Biomed Eng, 58(10):2867-2875. ![]() [12]Jin DW, Yang JK, Zhang RH, et al., 2006. Terrain identification for prosthetic knees based on electromyo- graphic signal features. Tsinghua Sci Technol, 11(1): 74-79. ![]() [13]Jung JY, Heo W, Yang H, et al., 2015. A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors, 15(11): 27738-27759. ![]() [14]Kawamoto H, Lee S, Kanbe S, et al., 2003. Power assist method for HAL-3 using EMG-based feedback controller. Proc IEEE Int Conf on Systems, Man and Cybernetics, p.1648-1653. ![]() [15]Kim H, Shin YJ, Kim J, 2017a. Kinematic-based locomotion mode recognition for power augmentation exoskeleton. Int J Adv Rob Syst, 14(5):1-14. ![]() [16]Kim H, Shin YJ, Kim J, 2017b. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 46:32-45. ![]() [17]Kong K, Tomizuka M, 2009. A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Trans Mechatron, 14(3):358-370. ![]() [18]Lawson BE, Varol HA, Huff A, et al., 2013. Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neur Syst Rehabil Eng, 21(3): 466-473. ![]() [19]Lenzi T, de Rossi SMM, Vitiello N, et al., 2012. Intention- based EMG control for powered exoskeletons. IEEE Trans Biomed Eng, 59(8):2180-2190. ![]() [20]Lenzi T, Carrozza MC, Agrawal SK, 2013. Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Trans Neur Syst Rehabil Eng, 21(6):938-948. ![]() [21]Lewis CL, Ferris DP, 2011. Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5):789-793. ![]() [22]Long Y, Du ZJ, Wang WD, et al., 2016. PSO-SVM-based online locomotion mode identification for rehabilitation robotic exoskeletons. Sensors, 16(9):1-20. ![]() [23]Martinez-Hernandez U, Rubio-Solis A, Dehghani-Sanij AA, 2018. Recognition of walking activity and prediction of gait periods with a CNN and first-order MC strategy. 7th IEEE Int Conf on Biomedical Robotics and Biomechatronics, p.897-902. ![]() [24]Neumann DA, 2002. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Mosby, Inc., St. Louis, USA. ![]() [25]Perry J, Davids JR, 1992. Gait analysis: normal and pathological function. J Pediatr Orthop, 12(6):815. ![]() [26]Sankai Y, 2010. HAL: hybrid assistive limb based on cybernics. In: Kaneko M, Nakamura Y (Eds.), Robotics Research. Springer Berlin Heidelberg, p.25-34. ![]() [27]Sanz-Merodio D, Cestari M, Arevalo JC, et al., 2014. Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance. Adv Robot, 28(5): 329-338. ![]() [28]Sasaki D, Noritsugu T, Takaiwa M, 2013. Development of pneumatic lower limb power assist wear driven with wearable air supply system. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4440-4445. ![]() [29]Strausser KA, Kazerooni H, 2011. The development and testing of a human machine interface for a mobile medical exoskeleton. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4911-4916. ![]() [30]Varol HA, Sup F, Goldfarb M, 2010. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng, 57(3):542-551. ![]() [31]Veneman JF, Kruidhof R, Hekman EEG, et al., 2007. Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neur Syst Rehabil Eng, 15(3):379-386. ![]() [32]Walsh CJ, Endo K, Herr H, 2007. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot, 4(3):487-506. ![]() [33]Yan TF, Cempini M, Oddo CM, et al., 2015. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot Auton Syst, 64:120-136. ![]() [34]Young AJ, Ferris DP, 2017. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neur Syst Rehabil Eng, 25(2):171-182. ![]() [35]Young AJ, Simon A, Hargrove LJ, 2013. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. 35th Annual Int Conf IEEE Engineering in Medicine and Biology Society, p.1587- 1590. ![]() [36]Young AJ, Kuiken TA, Hargrove LJ, 2014. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J Neur Eng, 11(5):056021. ![]() [37]Zhang F, Fang Z, Liu M, et al., 2011. Preliminary design of a terrain recognition system. Annual Int Conf IEEE Engineering in Medicine and Biology Society, p.5452- 5455. ![]() [38]Zoss AB, Kazerooni H, Chu A, 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (bleex). IEEE/ASME Trans Mechatron, 11(2):128-138. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>