CLC number: TP37
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-04-16
Cited: 0
Clicked: 7272
Li-ping Chen, Hao Yin, Li-guo Yuan, António M. Lopes, J. A. Tenreiro Machado, Ran-chao Wu. A novel color image encryption algorithm based on a fractional-order discrete chaotic neural network and DNA sequence operations[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1900709 @article{title="A novel color image encryption algorithm based on a fractional-order discrete chaotic neural network and DNA sequence operations", %0 Journal Article TY - JOUR
一种基于离散分数阶混沌系统和DNA序列运算的新型彩色图像加密算法1合肥工业大学电气与自动化工程学院,中国合肥市,230009 2华南农业大学数学与信息学院,中国广州市,510642 3波尔图大学工程学院,葡萄牙波尔图市,4200-465 4波尔图理工学院电气工程系,葡萄牙波尔图市,4249-015 5安徽大学数学科学学院,中国合肥市,230601 摘要:提出一种基于动态DNA编码和混沌的新型彩色图像加密算法。将一个三神经元分数阶离散Hopfield神经网络作为伪随机混沌序列发生器。其初值由外部输入的五位密钥以及明文图像的哈希值计算得来。外部密钥包含分数阶离散Hopfield神经网络的离散步长和阶次。哈希值由SHA-2函数计算得到。在保证较大密钥空间的同时,提高了算法对明文图像的敏感性。在此基础上,提出一种新型三维投影置乱方法,置乱图像红、绿、蓝信号通道中像素位置。DNA编码以及扩散被用于扩散图像信息。使用离散分数阶Hopfield神经网络生成的伪随机数序列确定每个像素的编码规则,用以保证编码方式的多样性。最后,运用置乱II和XOR提升算法的安全性。实验结果和安全性分析表明,该算法具有较好安全性,能够抵御多种典型攻击。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdeljawad T, Banerjee S, Wu GC, 2019. Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption. Optik, in press. ![]() [2]Agarwal RP, El-Sayed AMA, Salman SM, 2013. Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv Differ Equat, 2013:320. ![]() [3]Ahgue AO, de Nkapkop JD, Effa JY, et al., 2018. A DNA-based chaos algorithm for an efficient image encryption application. Int Symp on Electronics and linebreak Telecommunications, p.1-4. ![]() [4]Al-Hazaimeh OM, Al-Jamal MF, Alhindawi N, et al., 2019. Image encryption algorithm based on Lorenz chaotic map with dynamic secret keys. Neur Comput Appl, 31(7):2395-2405. ![]() [5]Angstmann CN, Henry BI, Jacobs BA, et al., 2017. Discretization of fractional differential equations by a piecewise constant approximation. Math Model Nat Phenom, 12(6):23-36. ![]() [6]Atici FM, Şengül S, 2010. Modeling with fractional difference equations. J Math Anal Appl, 369(1):1-9. ![]() [7]Chai XL, Fu XL, Gan ZH, et al., 2019. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process, 155:44-62. ![]() [8]Chen GR, Mao YB, Charles KC, 2004. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Sol Fract, 21(3):749-761. ![]() [9]Chen JL, Lei C, Lin SL, et al., 2015. Preparation and structural characterization of a partially depolymerized beta-glucan obtained from Poria cocos sclerotium by ultrasonic treatment. Food Hydrocoll, 46:1-9. ![]() [10]Chen JX, Zhu ZL, Fu C, et al., 2015. An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach. Commun Nonl Sci Numer Simul, 23(1-3):294-310. ![]() [11]Chen JX, Zhu ZL, Zhang LB, et al., 2018. Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process, 142:340-353. ![]() [12]Chen LP, Wu RC, He YG, et al., 2015. Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl Math Comput, 257:274-284. ![]() [13]Chen LP, Cao JD, Wu RC, et al., 2017. Stability and synchronization of fractional-order memristive neural networks with multiple delays. Neur Netw, 94:76-85. ![]() [14]Deng SJ, Zhan YP, Xiao D, et al., 2011. Analysis and improvement of a hash-based image encryption algorithm. Commun Nonl Sci Numer Simul, 16(8):3269-3278. ![]() [15]El Raheem ZF, Salman SM, 2014. On a discretization process of fractional-order logistic differential equation. J Egypt Math Soc, 22(3):407-412. ![]() [16]Enayatifar R, Abdullah AH, Isnin IF, 2014. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng, 56:83-93. ![]() [17]Enayatifar R, Sadaei HJ, Abdullah AH, et al., 2015. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata. Opt Lasers Eng, 71:33-41. ![]() [18]Essaid M, Akharraz I, Saaidi A, et al., 2019. A novel image encryption scheme based on permutation/diffusion process using an improved 2D chaotic system. Int Conf on Wireless Technologies, Embedded and Intelligent Systems, p.1-6. ![]() [19]Goodrich C, Peterson AC, 2015. Discrete Fractional Calculus. Springer, New York, USA. ![]() [20]Gottwald GA, Melbourne I, 2004. A new test for chaos in deterministic systems. Proc R Soc Lond Ser A, 460(2042):603-611. ![]() [21]Gray RM, 2011. Entropy and Information Theory (2nd Ed.). Springer, New York, USA. ![]() [22]Guan ZH, Huang FJ, Guan WJ, 2005. Chaos-based image encryption algorithm. Phys Lett A, 346(1-3):153-157. ![]() [23]Guesmi R, Farah MAB, Kachouri A, et al., 2016. A novel chaos-based image encryption using DNA sequence operation and secure Hash algorithm SHA-2. Nonl Dynam, 83(3):1123-1136. ![]() [24]Hanis S, Amutha R, 2019. A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonl Dynam, 95(1):421-432. ![]() [25]Hopfield JJ, 1982. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA, 79(8):2554-2558. ![]() [26]Hu GY, Kou WL, Dong JE, et al., 2018. A novel image encryption algorithm based on cellular neural networks hyper chaotic system. IEEE 4th Int Conf on Computer and Communications, p.1878-1882. ![]() [27]Hua ZY, Zhou YC, Huang HJ, 2019. Cosine-transform-based chaotic system for image encryption. Inform Sci, 480:403-419. ![]() [28]Huang LL, Park JH, Wu GC, et al., 2020. Variable-order fractional discrete-time recurrent neural networks. J Comput Appl Math, 370:112633. ![]() [29]Kaslik E, Sivasundaram S, 2012. Nonlinear dynamics and chaos in fractional-order neural networks. Neur Netw, 32:245-256. ![]() [30]Li CQ, Lin DD, Li JH, 2017. Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multim, 24(3):64-71. ![]() [31]Li RZ, Liu Q, Liu LF, 2019. Novel image encryption algorithm based on improved logistic map. IET Image Process, 13(1):125-134. ![]() [32]Li Z, Peng CG, Li LR, et al., 2018. A novel plaintext-related image encryption scheme using hyper-chaotic system. Nonl Dynam, 94(2):1319-1333. ![]() [33]Liu HJ, Kadir A, 2015. Asymmetric color image encryption scheme using 2D discrete-time map. Signal Process, 113:104-112. ![]() [34]Machado JAT, 2015. Fractional order description of DNA. Appl Math Model, 39(14):4095-4102. ![]() [35]Machado JAT, 2017. Bond graph and memristor approach to DNA analysis. Nonl Dynam, 88(2):1051-1057. ![]() [36]Machado JAT, Costa AC, Quelhas MD, 2011. Entropy analysis of the DNA code dynamics in human chromosomes. Comput Math Appl, 62(3):1612-1617. ![]() [37]Miller KS, Ross B, 1988. Fractional difference calculus. Proc Int Symp on Univalent Functions, Fractional Calculus and Their Applications, p.139-152. ![]() [38]Norouzi B, Mirzakuchaki S, 2017. An image encryption algorithm based on DNA sequence operations and cellular neural network. Multim Tools Appl, 76(11):13681-13701. ![]() [39]Ravichandran D, Praveenkumar P, Rayappan JBB, et al., 2017. DNA chaos blend to secure medical privacy. IEEE Trans NanoBiosci, 16(8):850-858. ![]() [40]Sun SL, 2018. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling. IEEE Photon J, 10(2):7201714. ![]() [41]Toughi S, Fathi MH, Sekhavat YA, 2017. An image encryption scheme based on elliptic curve pseudo random and Advanced Encryption System. Signal Process, 141:217-227. ![]() [42]ur Rehman A, Liao XF, Ashraf R, et al., 2018. A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik, 159:348-367. ![]() [43]Wang JS, Long F, Ou WH, 2017. CNN-based color image encryption algorithm using DNA sequence operations. Int Conf on Security, Pattern Analysis, and Cybernetics, p.730-736. ![]() [44]Wang XY, Zhang HL, Bao XM, 2016a. Color image encryption scheme using CML and DNA sequence operations. Biosystems, 144:18-26. ![]() [45]Wang XY, Liu CM, Zhang HL, 2016b. An effective and fast image encryption algorithm based on chaos and interweaving of ranks. Nonl Dynam, 84(3):1595-1607. ![]() [46]Wu GC, Baleanu D, Lin ZX, 2016. Image encryption technique based on fractional chaotic time series. J Vibr Contr, 22(8):2092-2099. ![]() [47]Wu GC, Abdeljawad T, Liu JL, et al., 2019a. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonl Anal Model Contr, 24(6):919-936. ![]() [48]Wu GC, Deng ZG, Baleanu D, et al., 2019b. New variable-order fractional chaotic systems for fast image encryption. Chaos, 29(8):083103. ![]() [49]Wu XJ, Kan HB, Kurths J, 2015. A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl Soft Comput, 37:24-39. ![]() [50]Wu XJ, Wang KS, Wang XY, et al., 2017. Lossless chaotic color image cryptosystem based on DNA encryption and entropy. Nonl Dynam, 90(2):855-875. ![]() [51]Ye GD, Pan C, Huang XL, et al., 2018. An efficient pixel-level chaotic image encryption algorithm. Nonl Dynam, 94(1):745-756. ![]() [52]Zhang GJ, Liu Q, 2011. A novel image encryption method based on total shuffling scheme. Opt Commun, 284(12): 2775-2780. ![]() [53]Zhang LM, Sun KH, Liu WH, et al., 2017. A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations. Chin Phys B, 26(10):100504. ![]() [54]Zhang LY, Li CQ, Wong KW, et al., 2012. Cryptanalyzing a chaos-based image encryption algorithm using alternate structure. J Syst Softw, 85(9):2077-2085. ![]() [55]Zhang Q, Wei XP, 2013. A novel couple images encryption algorithm based on DNA subsequence operation and chaotic system. Optik, 124(23):6276-6281. ![]() [56]Zhang Q, Liu LL, Wei XP, 2014. Improved algorithm for image encryption based on DNA encoding and multi-chaotic maps. AEU Int J Electron Commun, 68(3): 186-192. ![]() [57]Zhang R, Qi DW, Wang YZ, 2010. Dynamics analysis of fractional order three-dimensional Hopfield neural network. Proc 6th Int Conf on Natural Computation, p.3037-3039. ![]() [58]Zhang Y, 2018. The unified image encryption algorithm based on chaos and cubic S-Box. Inform Sci, 450:361-377. ![]() [59]Zhang YQ, Wang XY, 2015. A new image encryption algorithm based on non-adjacent coupled map lattices. Appl Soft Comput, 26:10-20. ![]() [60]Zhang YQ, Wang XY, Liu J, et al., 2016. An image encryption scheme based on the MLNCML system using DNA sequences. Opt Lasers Eng, 82:95-103. ![]() [61]Zhang YS, Xiao D, 2014. Self-adaptive permutation and combined global diffusion for chaotic color image encryption. AEU Int J Electron Commun, 68(4):361-368. ![]() [62]Zheng XD, Xu J, Li W, 2009. Parallel DNA arithmetic operation based on n-moduli set. Appl Math Comput, 212(1):177-184. ![]() [63]Zhou YC, Bao L, Chen CLP, 2014. A new 1D chaotic system for image encryption. Signal Process, 97:172-182. ![]() [64]Zhou YC, Hua ZY, Pun CM, et al., 2015. Cascade chaotic system with applications. IEEE Trans Cybern, 45(9):2001-2012. ![]() [65]Zhu ZL, Zhang W, Wong KW, et al., 2011. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inform Sci, 181(6):1171-1186. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>