[1]Abirami A, Prakash P, Thangavel K, 2018. Fractional diffusion equation-based image denoising model using CN-GL scheme. Int J Comput Math, 95(6-7):1222-1239.

[2]Bai J, Feng XC, 2018. Image denoising using generalized anisotropic diffusion. J Math Imag Vis, 60(7):994-1007.

[3]Bergounioux M, Piffet L, 2010. A second-order model for image denoising. Set-Valued Var Anal, 18(3-4):277-306.

[4]Blomgren P, Chan TF, Mulet P, et al., 1997. Total variation image restoration: numerical methods and extensions. Proc Int Conf on Image Processing, p.384-387.

[5]Bredies K, Kunisch K, Pock T, 2010. Total generalized variation. SIAM J Imag Sci, 3(3):492-526.

[6]Knoll F, Bredies K, Pock T, et al., 2011. Second order total generalized variation (TGV) for MRI. Mag Reson Med, 65(2):480-491.

[7]Podlubny I, 1998. Fractional Differential Equations. Academic Press, Cambridge, USA.

[8]Rosen JB, 1961. The gradient projection method for nonlinear programming. Part II. Nonlinear constraints. J Soc Ind Appl Math, 9(4):514-532.

[9]Rudin LI, Osher S, Fatemi E, 1992. Nonlinear total variation based noise removal algorithms. Phys D, 60(1-4):259- 268.

[10]Vogel CR, 2002. Computational Methods for Inverse Problems. SIAM, Philadelphia, USA.

[11]Wu GC, Baleanu D, Bai YR, 2019. Discrete fractional masks and their applications to image enhancement. In: Bǎleanu D, Lopes AM (Eds.), Applications in Engineering, Life and Social Sciences, Part B. De Gruyter, Berlin, Boston, p.261-270.

[12]Zhang L, Zhang L, Mou XQ, et al., 2011. FSIM: a feature similarity index for image quality assessment. IEEE Trans Imag Process, 20(8):2378-2386.

Open peer comments: Debate/Discuss/Question/Opinion
<1>