CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-05-20
Cited: 0
Clicked: 6334
Citations: Bibtex RefMan EndNote GB/T7714
Zai-rong Wang, Babak Shiri, Dumitru Baleanu. Discrete fractional watermark technique[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000133 @article{title="Discrete fractional watermark technique", %0 Journal Article TY - JOUR
离散分数阶水印技术1内江师范学院计算机学院,数据恢复四川省重点实验室,中国内江市,641100 2内江师范学院数学与信息科学学院,数据恢复四川省重点实验室,中国内江市,641100 3詹卡亚大学数学系,土耳其安卡拉,06530 4空间科学研究所,罗马尼亚马格勒布加勒斯,011254 摘要:分数阶logistic映射具有丰富的动力学行为,用于产生混沌序列。基于分数阶logistic映射进行图像加密,嵌入原始图像,获得水印图像。在图像加密中,分数阶阶数介于0、1之间,被用作加密密码,提升了图像加密时的密码空间,加大了黑客攻击难度。离散分数阶水印技术提供了一种有效保护硬件、图像及其他电子文件的方法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdeljawad T, 2011. On Riemann and Caputo fractional differences. Comput Math Appl, 62(3):1602-1611. ![]() [2]Anastassiou GA, 2011. About discrete fractional calculus with inequalities. In: Anastassiou GA (Ed.), Intelligent Mathematics: Computational Analysis. Springer, Berlin, Germany, p.575-585. ![]() [3]Atici FM, Eloe P, 2009. Initial value problem in discrete fractional calculus. Proc Amer Math Soc, 137(3):981-989. ![]() [4]Bai YR, Baleanu D, Wu GC, 2018. A novel shuffling technique based on fractional chaotic maps. Optik, 168:553-562. ![]() [5]Bastos N, Ferreira R, Torres D, 2011. Discrete-time fractional variational problems. Signal Process, 91(3):513-524. ![]() [6]Gao H, Gao TG, 2019. Double verifiable image encryption based on chaos and reversible watermarking algorithm. Multim Tools Appl, 78(6):7267-7288. ![]() [7]Ghose S, Das A, Bhunia AK, et al., 2020. Fractional local neighborhood intensity pattern for image retrieval using genetic algorithm. Multim Tools Appl, in press. ![]() [8]Han H, 2020. A fractional-order decomposition model of image registration and its numerical algorithm. Comput Appl Math, 39:45. ![]() [9]Li M, Xiao D, Liu H, et al., 2016. A recoverable chaos-based fragile watermarking with high PSNR preservation. Secur Commun Netw, 9(14):2371-2386. ![]() [10]Liu ZY, Xia TC, Wang JB, 2017. Fractional two-dimensional discrete chaotic map and its applications to the information security with elliptic-curve public key cryptography. J Vibr Contr, 24(20):4797-4824. ![]() [11]Liu ZY, Xia TC, Wang JB, 2018. Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem. Chin Phys B, 27(3):030502. ![]() [12]Ma CY, Shiri B, Wu GC, et al., 2020. New fractional signal smoothing equations with short memory and variable order. Optik, in press. ![]() [13]Podlubny I, 1999. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego, USA. ![]() [14]Pu YF, Wang WX, Zhou JL, et al., 2008. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci Chin Ser F Inform Sci, 51(9):1319-1339. ![]() [15]Wu GC, Baleanu D, 2014. Discrete fractional logistic map and its chaos. Nonl Dynam, 75:283-287. ![]() [16]Wu GC, Zeng LG, Baleanu D, et al., 2014. Method for Generating Chaos Sequence Based on Fractional Order Discrete Mapping. CN Patent CN201 410 033 835 (in Chinese). ![]() [17]Wu GC, Deng ZG, Baleanu D, et al., 2019. New variable-order fractional chaotic systems for fast image encryption. Chaos, 28(8):083103. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>