CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-03-31
Cited: 0
Clicked: 7064
Xin HE, Zhe ZHANG, Li XU, Jiapei YU. Efficient normalization for quantitative evaluation of the driving behavior using a gated auto-encoder[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000667 @article{title="Efficient normalization for quantitative evaluation of the driving behavior using a gated auto-encoder", %0 Journal Article TY - JOUR
基于门控自编码器的驾驶行为量化评价标准化策略浙江大学电气工程学院,中国杭州市,310027 摘要:在评估驾驶风格时,对驾驶行为的标准化至关重要。本文对车辆的纵向控制进行了研究。通过归一化任务将不同环境中的驾驶行为映射到统一条件下。前人工作采用必要的驾驶员模型进行驾驶循环测试;与这种基于模型的方法不同,我们提出的方法在遵循标准速度曲线时使用自动编码器直接对驾驶行为进行标准化。为确保车速和驾驶行为之间满足正相关约束条件,在编码器和解码器之间设计了门控函数。所提方法无需模型且高效。测试结果验证了该方法与已有方法的一致性。同时,测试了其在驾驶行为和燃料消耗分析的定量评估中的应用。仿真结果验证了所提方法的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Al-Sultan S, Al-Bayatti AH, Zedan H, 2013. Context-aware driver behavior detection system in intelligent transportation systems. IEEE Trans Veh Technol, 62(9):4264-4275. ![]() [2]Baldi P, 2012. Autoencoders, unsupervised learning, and deep architectures. Proc ICML Workshop on Unsupervised and Transfer, p.37-50. ![]() [3]Cao WJ, Lin X, Zhang K, et al., 2017. Analysis and evaluation of driving behavior recognition based on a 3-axis accelerometer using a random forest approach. Proc 16th ACM/IEEE Int Conf on Information Processing in Sensor Networks, p.303-304. ![]() [4]Chen J, Wu ZC, Zhang J, 2019. Driving safety risk prediction using cost-sensitive with nonnegativity-constrained autoencoders based on imbalanced naturalistic driving data. IEEE Trans Intell Transp Syst, 20(12):4450-4465. ![]() [5]Filev D, Lu JB, Prakah-Asante K, et al., 2009. Real-time driving behavior identification based on driver-in-the-loop vehicle dynamics and control. Proc IEEE Int Conf on Systems, Man and Cybernetics, p.2020-2025. ![]() [6]Hu DL, Zhao XH, Mu ZM, et al., 2013. Distinguish method of fatigue state based on driving behavior wavelet analysis. Proc 32nd Chinese Control Conf, p.3590-3596. ![]() [7]Imamura T, Yamashita H, Zhang Z, et al., 2008. A study of classification for driver conditions using driving behaviors. Proc IEEE Int Conf on Systems, Man and Cybernetics, p.1506-1511. ![]() [8]Kaplan S, Guvensan MA, Yavuz AG, et al., 2015. Driver behavior analysis for safe driving: a survey. IEEE Trans Intell Transp Syst, 16(6):3017-3032. ![]() [9]Krizhevsky A, Sutskever I, Hinton GE, 2012. ImageNet classification with deep convolutional neural networks. Proc 25th Int Conf on Neural Information Processing Systems, p.1097-1105. ![]() [10]Plöchl M, Edelmann J, 2007. Driver models in automobile dynamics application. Veh Syst Dynam, 45(7-8):699-741. ![]() [11]Ranney TA, 1994. Models of driving behavior: a review of their evolution. Accid Anal Prev, 26(6):733-750. ![]() [12]Shi B, Hu J, Xu L, 2015a. Automatic transmission gear prediction based on personalised transmission gear modelling. Int J Veh Syst Modell Test, 10(4):356-365. ![]() [13]Shi B, Xu L, Hu J, et al., 2015b. Evaluating driving styles by normalizing driving behavior based on personalized driver modeling. IEEE Trans Syst Man Cybern Syst, 45(12):1502-1508. ![]() [14]Song B, Delorme D, Werf JV, 2000. Cognitive and hybrid model of human driver. Proc IEEE Intelligent Vehicles Symp, p.1-6. ![]() [15]TAB, 2010. China Road Traffic Accidents Statistics. Traffic Administration Bureau of the Ministry of Public Security of the People’s Republic of China (in Chinese). ![]() [16]Tschannen M, Bachem O, Lucic M, 2018. Recent advances in autoencoder-based representation learning. https://arxiv.org/abs/1812.05069 ![]() [17]Wang WS, Han W, Na XX, et al., 2020. A probabilistic approach to measuring driving behavior similarity with driving primitives. IEEE Trans Intell Veh, 5(1):127-138. ![]() [18]Wang YH, Ho IWH, 2018. Joint deep neural network modelling and statistical analysis on characterizing driving behaviors. Proc IEEE Intelligent Vehicles Symp, p.1-6. ![]() [19]Xu L, Hu J, Jiang H, et al., 2015. Establishing style-oriented driver models by imitating human driving behaviors. IEEE Trans Intell Transp Syst, 16(5):2522-2530. ![]() [20]Zhang Y, Li JJ, Guo YH, et al., 2019. Vehicle driving behavior recognition based on multi-view convolutional neural network with joint data augmentation. IEEE Trans Veh Technol, 68(5):4223-4234. ![]() [21]Zhang YL, Lin WC, Chin YKS, 2010. A pattern-recognition approach for driving skill characterization. IEEE Trans Intell Transp Syst, 11(4):905-916. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>