
CLC number: TP333
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-02-12
Cited: 0
Clicked: 3501
Citations: Bibtex RefMan EndNote GB/T7714
Yaofeng TU, Rong XIAO, Yinjun HAN, Zhenghua CHEN, Hao JIN, Xuecheng QI, Xinyuan SUN. DDUC: an erasure-coded system with decoupled data updating and coding[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200466 @article{title="DDUC: an erasure-coded system with decoupled data updating and coding", %0 Journal Article TY - JOUR
DDUC:数据更新与编码解耦的纠删码系统1移动网络和移动多媒体技术国家重点实验室,中国深圳市,518000 2中兴通讯股份有限公司,中国南京市,210000 摘要:在分布式存储系统中,常用的数据冗余方法包括副本和纠删码(erasure code,EC)。相较于副本,EC具有更好的存储效率,但是在更新方面的开销更大。此外,并发更新带来的一致性和可靠性问题给EC应用带来了新的挑战。许多研究工作都致力于优化EC技术,包括算法优化、数据更新方法创新等,但并发更新的一致性和可靠性问题尚未得到很好解决。本文介绍了一种将数据更新与EC编码解耦的存储系统,命名为DDUC,并提出了一种副本与校验块结合的放置策略。对于(N, M)的EC系统,按照N组M+1的副本进行数据布局,并将同一条带的冗余数据块都放置在校验节点上,使得校验节点可以自主地执行本地EC编码。基于上述策略,实现了一种两阶段数据更新方法,在第一阶段按照副本模式进行数据更新,在第二阶段由校验节点独立完成EC编码。这样在保证高并发性能的同时,解决了并发更新导致的数据可靠性降低的问题。同时利用PMem硬件的字节寻址和8字节原子写特性实现了一种轻量级的日志机制,在提升性能的同时保证了数据的一致性。实验结果表明,和当前主流的存储系统Ceph相比,本文所提出的存储系统并发访问性能提升至1.70-3.73倍,时延仅为Ceph的3.4%-5.9%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aguilera MK, Janakiraman R, Xu LH, 2005a. On the erasure recoverability of MDS codes under concurrent updates. Proc IEEE Int Symp on Information Theory, p.1358-1362. ![]() [2]Aguilera MK, Janakiraman R, Xu LH, 2005b. Using erasure codes efficiently for storage in a distributed system. Int Conf on Dependable Systems and Networks, p.336-345. ![]() [3]Chan JCW, Ding Q, Lee PPC, et al., 2014. Parity logging with reserved space: towards efficient updates and recovery in erasure-coded clustered storage. Proc 12th USENIX Conf on File and Storage Technologies, p.163-176. ![]() [4]Ghemawat S, Gobioff H, Leung ST, 2003. The Google file system. Proc 19th ACM Symp on Operating Systems Principles, p.29-43. ![]() [5]Gong GW, Shen ZR, Wu SZ, et al., 2021. Optimal rack-coordinated updates in erasure-coded data centers. 40th IEEE Conf on Computer Communications, p.1-10. ![]() [6]Huang C, Simitci H, Xu YK, et al., 2012. Erasure coding in Windows Azure Storage. Proc USENIX Annual Technical Conf, p.2. ![]() [7]Huang JZ, Xia J, Qin X, et al., 2019. Optimization of small updates for erasure-coded in-memory stores. Comput J, 62(6):869-883. ![]() [8]Jiang TY, Zhang GY, Huang ZC, et al., 2021. FusionRAID: achieving consistent low latency for commodity SSD arrays. 19th USENIX Conf on File and Storage Technologies, p.355-370. ![]() [9]Konwar KM, Prakash N, Lynch N, et al., 2017. A layered architecture for erasure-coded consistent distributed storage. Proc ACM Symp on Principles of Distributed Computing, p.63-72. ![]() [10]Li HB, Zhang YM, Zhang ZM, et al., 2017. PARIX: speculative partial writes in erasure-coded systems. Proc USENIX Annual Technical Conf, p.581-587. ![]() [11]Liu YJ, Wei B, Wu JG, et al., 2021. Erasure-coded multi-block updates based on hybrid writes and common XORs first. 39th Int Conf on Computer Design, p.472-479. ![]() [12]Meng YL, Zhang LL, Xu D, et al., 2019. A dynamic erasure code based on block code. Proc Int Conf on Embedded Wireless Systems and Networks, p.379-383. ![]() [13]Ousterhout J, Agrawal P, Erickson D, et al., 2010. The case for RAMClouds: scalable high-performance storage entirely in DRAM. ACM SIGOPS Oper Syst Rev, 43(4):92-105. ![]() [14]Peter K, Reinefeld A, 2012. Consistency and fault tolerance for erasure-coded distributed storage systems. Proc 5th Int Workshop on Data-Intensive Distributed Computing, p.23-32. ![]() [15]Pless V, 1998. Introduction to the Theory of Error-Correcting Codes (3rd Ed.). John Wiley & Sons, Hoboken, USA. ![]() [16]Pu WJ, Chen NJ, Zhong QW, 2020. SDCUP: software-defined-control based erasure-coded collaborative data update mechanism. IEEE Access, 8:180646-180660. ![]() [17]Rizzo L, 1997. Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Comput Commun Rev, 27(2):24-36. ![]() [18]Shen ZR, Lee PPC, 2018. Cross-rack-aware updates in erasure-coded data centers. Proc 47th Int Conf on Parallel Processing, Article 80. ![]() [19]Wang F, Tang YJ, Xie YW, et al., 2019. XORInc: optimizing data repair and update for erasure-coded systems with XOR-based in-network computation. Proc 35th Symp on Mass Storage Systems and Technologies, p.244-256. ![]() [20]Wang YJ, Pei XQ, Ma XK, et al., 2018. TA-update: an adaptive update scheme with tree-structured transmission in erasure-coded storage systems. IEEE Trans Parall Distrib Syst, 29(8):1893-1906. ![]() [21]Weatherspoon H, Kubiatowicz JD, 2002. Erasure coding vs. replication: a quantitative comparison. 1st Int Workshop on Peer-to-Peer Systems, p.328-337. ![]() [22]Xiong YL, Zhou J, Su L, et al., 2021. ECCH: erasure coded consistent hashing for distributed storage systems. IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, p.177-184. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>