Full Text:  <2278>

Summary:  <557>

CLC number: TP391.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-11-28

Cited: 0

Clicked: 2771

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Meiqin LIU

https://orcid.org/0000-0003-0693-6574

Chaofan ZHOU

https://orcid.org/0000-0003-0807-6539

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


A graph-based two-stage classification network for mobile screen defect inspection


Author(s):  Chaofan ZHOU, Meiqin LIU, Senlin ZHANG, Ping WEI, Badong CHEN

Affiliation(s):  State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):  zhouchaofan@zju.edu.cn, liumeiqin@zju.edu.cn, slzhang@zju.edu.cn, pingwei@mail.xjtu.edu.cn, chenbd@mail.xjtu.edu.cn

Key Words:  Graph-based methods; Multi-label classification; Mobile screen defects; Neural networks


Share this article to: More <<< Previous Paper|Next Paper >>>


Abstract: 
Defect inspection, also known as defect detection, is significant in mobile screen quality control. There are some challenging issues brought by the characteristics of screen defects, including the following: (1) the problem of interclass similarity and intraclass variation, (2) the difficulty in distinguishing low contrast, tiny-sized, or incomplete defects, and (3) the modeling of category dependencies for multi-label images. To solve these problems, a graph reasoning module, stacked on a classification module, is proposed to expand the feature dimension and improve low-quality image features by exploiting category-wise dependency, image-wise relations, and interactions between them. To further improve the classification performance, the classifier of the classification module is redesigned as a cosine similarity function. With the help of contrastive learning, the classification module can better initialize the category-wise graph of the reasoning module. Experiments on the mobile screen defect dataset show that our two-stage network achieves the following best performances: 97.7% accuracy and 97.3% F-measure. This proves that the proposed approach is effective in industrial applications.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE