CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-02-28
Cited: 0
Clicked: 3649
Citations: Bibtex RefMan EndNote GB/T7714
Zhe JIN, Yin ZHANG, Jiaxu MIAO, Yi YANG, Yueting ZHUANG, Yunhe PAN. A knowledge-guided and traditional Chinese medicine informed approach for herb recommendation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200662 @article{title="A knowledge-guided and traditional Chinese medicine informed approach for herb recommendation", %0 Journal Article TY - JOUR
一种知识引导的基于中医学信息的药材推荐方法浙江大学计算机科学与技术学院,中国杭州市,310027 摘要:在中国几千年历史中,中医一直是人们关注的焦点。近年来,随着人工智能技术的兴起,部分研究开始以数据驱动的方式学习中医的方剂,即根据病人的症状推荐一组药材。现有大多数药材推荐模型忽略了中医领域的知识,例如药材和症状之间的关系,中药药方形成逻辑,等等。本文提出一种以知识为引导、结合中医学信息的药材推荐方法。本文使用的知识包括从中医典籍及处方中提取的知识图谱,以此得到症状和药材之间的交互和共生关系。利用这些信息,基于图注意力网络提取症状和药材的特征向量。在此基础上,将处方学等中医学信息加入到预测层中,提高了模型对药材的预测能力。最后,在中医处方数据集上进行的实验表明,该方法优于目前主流的药材推荐算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Atwood J, Towsley D, 2016. Diffusion-convolutional neural networks. Proc 30th Int Conf on Neural Information Processing Systems, p.2001-2009. ![]() [2]Bordes A, Usunier N, Garcia-Duran A, et al., 2013. Translating embeddings for modeling multi-relational data. Proc 26th Int Conf on Neural Information Processing Systems, p.2787-2795. ![]() [3]Braga-Neto U, 2020. Fundamentals of Pattern Recognition and Machine Learning. Springer, Cham, Switzerland. ![]() [4]Brody S, Alon U, Yahav E, 2022. How attentive are graph attention networks? Proc 10th Int Conf on Learning Representations. ![]() [5]Bruna J, Zaremba W, Szlam A, et al., 2014. Spectral networks and locally connected networks on graphs. Proc 2nd Int Conf on Learning Representations. ![]() [6]Chen XT, Ruan CY, Zhang YC, et al., 2018. Heterogeneous information network based clustering for categorizations of traditional Chinese medicine formula. Proc IEEE Int Conf on Bioinformatics and Biomedicine, p.839-846. ![]() [7]Cheung F, 2011. TCM: made in China. Nature, 480(7378):S82-S83. ![]() [8]Do K, Tran T, Venkatesh S, 2019. Graph transformation policy network for chemical reaction prediction. Proc 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.750-760. ![]() [9]Gehring J, Auli M, Grangier D, et al., 2017. A convolutional encoder model for neural machine translation. Proc 55th Annual Meeting of the Association for Computational Linguistics, p.123-135. ![]() [10]Girshick R, Donahue J, Darrell T, et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.580-587. ![]() [11]Guo SN, Lin YF, Feng N, et al., 2019. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proc 33rd AAAI Conf on Artificial Intelligence, p.922-929. ![]() [12]Hamilton WL, Ying R, Leskovec J, 2017. Inductive representation learning on large graphs. Proc 31st Int Conf on Neural Information Processing Systems, p.1025-1035. ![]() [13]Ji WD, Zhang Y, Wang XL, et al., 2017. Latent semantic diagnosis in traditional Chinese medicine. World Wide Web, 20(5):1071-1087. ![]() [14]Jin YY, Zhang W, He XN, et al., 2020. Syndrome-aware herb recommendation with multi-graph convolution network. Proc IEEE 36th Int Conf on Data Engineering, p.145-156. ![]() [15]Jin YY, Ji WD, Zhang W, et al., 2022. A KG-enhanced multi-graph neural network for attentive herb recommendation. IEEE/ACM Trans Comput Biol Bioinform, 19(5):2560-2571. ![]() [16]Kingma DP, Ba J, 2015. Adam: a method for stochastic optimization. Proc 3rd Int Conf on Learning Representations. ![]() [17]Kipf TN, Welling M, 2017. Semi-supervised classification with graph convolutional networks. Proc 5th Int Conf on Learning Representations. ![]() [18]LeCun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324. ![]() [19]Li W, Yang Z, 2017. Distributed representation for traditional Chinese medicine herb via deep learning models. https://arxiv.org/abs/1711.01701 ![]() [20]Li W, Yang Z, 2019. Exploration on generating traditional Chinese medicine prescriptions from symptoms with an end-to-end approach. Proc 8th CCF Int Conf on Natural Language Processing and Chinese Computing, p.486-498. ![]() [21]Lin F, Xiahou J, Xu ZX, 2016. TCM clinic records data mining approaches based on weighted-LDA and multi-relationship LDA model. Multim Tools Appl, 75(22):14203-14232. ![]() [22]Lu YT, Liu HY, Yang Kuo, et al., 2022. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):1-18. ![]() [23]Ma JL, Wang ZJ, 2016. Discovering syndrome regularities in traditional Chinese medicine clinical by topic model. Proc 11th Int Conf on P2P, Parallel, Grid, Cloud and Internet Computing, p.157-162. ![]() [24]Mao YJ, Meng LK, Liu HY, et al., 2022. Therapeutic potential of traditional Chinese medicine for vascular endothelial growth factor. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(5):353-364. ![]() [25]Raissi M, Perdikaris P, Karniadakis GE, 2019. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys, 378:686-707. ![]() [26]Ruan CY, Ma JG, Wang Y, et al., 2019a. Discovering regularities from traditional Chinese medicine prescriptions via bipartite embedding model. Proc 28th Int Joint Conf on Artificial Intelligence, p.3346-3352. ![]() [27]Ruan CY, Wang Y, Zhang YC, et al., 2019b. Exploring regularity in traditional Chinese medicine clinical data using heterogeneous weighted networks embedding. Proc Int Conf on Database Systems for Advanced Applications, p.310-313. ![]() [28]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. ![]() [29]Veličković P, Cucurull G, Casanova A, et al., 2018. Graph attention networks. Proc 6th Int Conf on Learning Representations. ![]() [30]Wang S, Huang EW, Zhang RS, et al., 2016. A conditional probabilistic model for joint analysis of symptoms, diseases, and herbs in traditional Chinese medicine patient records. Proc IEEE Int Conf on Bioinformatics and Biomedicine, p.411-418. ![]() [31]Wang X, Ji HY, Shi C, et al., 2019. Heterogeneous graph attention network. Proc World Wide Web Conf, p.2022-2032. ![]() [32]Wang XY, Zhang Y, Wang XL, et al., 2019. A knowledge graph enhanced topic modeling approach for herb recommendation. Proc 24th Int Conf on Database Systems for Advanced Applications, p.709-724. ![]() [33]Xu KYL, Hu WH, Leskovec J, et al., 2019. How powerful are graph neural networks? Proc 7th Int Conf on Learning Representations. ![]() [34]Yang Y, Rao YL, Yu MH, et al., 2022. Multi-layer information fusion based on graph convolutional network for knowledge-driven herb recommendation. Neur Netw, 146:1-10. ![]() [35]Yao L, Zhang Y, Wei BG, et al., 2018. A topic modeling approach for traditional Chinese medicine prescriptions. IEEE Trans Knowl Data Eng, 30(6):1007-1021. ![]() [36]Zhang JN, Shi XJ, Xie JY, et al., 2018. GaAN: gated attention networks for learning on large and spatiotemporal graphs. Proc 34th Conf on Uncertainty in Artificial Intelligence, p.339-349. ![]() [37]Zhang S, Tong HH, Xu JJ, et al., 2019. Graph convolutional networks: a comprehensive review. Comput Soc Netw, 6(1):11. ![]() [38]Zhao GS, Zhuang XT, Wang XM, et al., 2018. Data-driven traditional Chinese medicine clinical herb modeling and herb pair recommendation. Proc 7th Int Conf on Digital Home, p.160-166. ![]() [39]Zhao W, Lu WK, Li ZY, et al., 2022. TCM herbal prescription recommendation model based on multi-graph convolutional network. J Ethnopharmacol, 297:115109. ![]() [40]Zheng CP, Fan XL, Wang C, et al., 2020. GMAN: a graph multi-attention network for traffic prediction. Proc 34th AAAI Conf on Artificial Intelligence, p.1234-1241. ![]() [41]Zhou WA, Yang K, Zeng JY, et al., 2021. FordNet: recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule. Pharmacol Res, 173:105752. ![]() [42]Zitnik M, Agrawal M, Leskovec J, 2018. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 34(13):i457-i466. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>