CLC number: TN92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-01-26
Cited: 0
Clicked: 3248
Yajun ZHAO. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200666 @article{title="Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions", %0 Journal Article TY - JOUR
面向6G的可重构智能超表面:应用、挑战和解决方案1北京理工大学,中国北京市,100081 2中兴通讯,中国北京市,100029 摘要:学者们有望继续提高智能超表面(RIS)理论研究的深度和广度,为RIS工程应用提供更高的理论极限。通过诸多学术研究的突破以及工程化的推动,RIS技术研究已取得重大进展。本文首先概述RIS工程应用研究进展,主要关注其典型技术特性、分类和部署场景。然后,系统、全面地分析了RIS面临的挑战,提出潜在解决方案,包括通过级联信道解耦来解决波束成形问题、解决RIS调控约束的解决方案、探索RIS基于网络控制的系统架构、研究信道调控和信息调制的融合、研究真时延(TTD)机制在RIS中的使用,并探讨了RIS辅助非的正交多址接入(NOMA)和基于RIS的发射机。最后,讨论了该领域的未来趋势和挑战。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Avazov N, Hicheri R, Muaaz M, et al., 2021. A trajectory-driven 3D non-stationary mm-Wave MIMO channel model for a single moving point scatterer. IEEE Access, 9:115990-116001. ![]() [2]Bansal A, Agrawal N, Singh K, 2023. Rate-splitting multiple access for UAV-based RIS-enabled interference-limited vehicular communication system. IEEE Trans Intell Veh, 8(1):936-948. ![]() [3]Basar E, 2020. Reconfigurable intelligent surface-based index modulation: a new beyond MIMO paradigm for 6G. IEEE Trans Commun, 68(5):3187-3196. ![]() [4]Basar E, Wen MW, Mesleh R, et al., 2017. Index modulation techniques for next-generation wireless networks. IEEE Access, 5:16693-16746. ![]() [5]Basar E, di Renzo M, De Rosny J, et al., 2019. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7:116753-116773. ![]() [6]Basharat S, Hassan SA, Pervaiz H, et al., 2021. Reconfigurable intelligent surfaces: potentials, applications, and challenges for 6G wireless networks. IEEE Wirel Commun, 28(6):184-191. ![]() [7]Bharadia D, Joshi KR, Kotaru M, et al., 2015. BackFi: high throughput WiFi backscatter. ACM SIGCOMM Comput Commun Rev, 45(4):283-296. ![]() [8]Cantos L, Awais M, Kim YH, 2022. Max-min rate optimization for uplink IRS-NOMA with receive beamforming. IEEE Wirel Commun Lett, 11(12):2512-2516. ![]() [9]Cui TJ, 2018. Information metamaterial and metasurface - from concept to system. Proc 43rd Int Conf on Infrared, Millimeter, and Terahertz Waves, p.1-3. ![]() [10]Cui TJ, Liu S, Zhang L, 2017. Information metamaterials and metasurfaces. J Mater Chem C, 5(15):3644-3668. ![]() [11]Cui TJ, Wu HT, Liu S, 2020. Research progress of information metamaterials. Acta Phys Sin, 69(15):158101(in Chinese). ![]() [12]Darsena D, Gelli G, Verde F, 2019. Design and performance analysis of multiple-relay cooperative MIMO networks. J Commun Netw, 21(1):25-32. ![]() [13]de Sena AS, Nardelli PHJ, da Costa DB, et al., 2021. IRS-assisted massive MIMO-NOMA networks: exploiting wave polarization. IEEE Trans Wirel Commun, 20(11):7166-7183. ![]() [14]di Renzo M, Debbah M, Phan-Huy DT, et al., 2019. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J Wirel Commun Netw, 2019:129. ![]() [15]Ding Y, Fusco V, Shitvov A, et al., 2018. Beam index modulation wireless communication with analog beamforming. IEEE Trans Veh Technol, 67(7):6340-6354. ![]() [16]Ding YC, Kim KJ, Koike-Akino T, et al., 2017. Spatial scattering modulation for uplink millimeter-Wave systems. IEEE Commun Lett, 21(7):1493-1496. ![]() [17]Ding ZG, Lv L, Fang F, et al., 2022. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks. Proc IEEE, 110(9):1358-1379. ![]() [18]Guo SS, Lv SH, Zhang HX, et al., 2020. Reflecting modulation. IEEE J Sel Areas Commun, 38(11):2548-2561. ![]() [19]Hu C, Dai LL, Han SF, et al., 2021. Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications. IEEE Trans Commun, 69(11):7736-7747. ![]() [20]Hua M, Wu QQ, Yang LX, et al., 2022. A novel wireless communication paradigm for intelligent reflecting surface based symbiotic radio systems. IEEE Trans Signal Process, 70:550-565. ![]() [21]Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Converged Netw, 3(1):1-32. ![]() [22]Kellogg B, Talla V, Gollakota S, et al., 2016. Passive Wi-Fi: bringing low power to Wi-Fi transmissions. Proc 13th USENIX Conf on Networked Systems Design and Implementation, p.151-164. ![]() [23]Khaleel A, Basar E, 2021. Reconfigurable intelligent surface-empowered MIMO systems. IEEE Syst J, 15(3):4358-4366. ![]() [24]Li HD, Fang F, Ding ZG, 2021. DRL-assisted resource allocation for NOMA-MEC offloading with hybrid SIC. Entropy, 23(5):613. ![]() [25]Li QC, El-Hajjar M, Hemadeh I, et al., 2023a. Performance analysis of active RIS-aided systems in the face of imperfect CSI and phase shift noise. IEEE Trans Veh Technol, 72(6):8140-8145. ![]() [26]Li QC, El-Hajjar M, Hemadeh I, et al., 2023b. Reconfigurable intelligent surface aided amplitude- and phase-modulated downlink transmission. IEEE Trans Veh Technol, 72(6):8146-8151. ![]() [27]Li QC, El-Hajjar M, Hemadeh I, et al., 2023c. The reconfigurable intelligent surface-aided multi-node IoT downlink: beamforming design and performance analysis. IEEE Int Things J, 10(7):6400-6414. ![]() [28]Lin CC, Boljanovic V, Yan H, et al., 2021. Wideband beamforming with rainbow beam training using reconfigurable true-time-delay arrays for millimeter-Wave wireless. ![]() [29]Liu YW, Qin ZJ, Elkashlan M, et al., 2017. Nonorthogonal multiple access for 5G and beyond. Proc IEEE, 105(12):2347-2381. ![]() [30]Liu YW, Liu X, Mu XD, et al., 2021. Reconfigurable intelligent surfaces: principles and opportunities. IEEE Commun Surv Tut, 23(3):1546-1577. ![]() [31]Liu YW, Mu XD, Liu X, et al., 2022a. Reconfigurable intelligent surface-aided multi-user networks: interplay between NOMA and RIS. IEEE Wirel Commun, 29(2):169-176. ![]() [32]Liu YW, Mu XD, Schober R, et al., 2022b. Simultaneously transmitting and reflecting (STAR)-RISs: a coupled phase-shift model. Proc IEEE Int Conf on Communications, p.2840-2845. ![]() [33]Long RZ, Guo HY, Yang G, et al., 2018. Symbiotic radio: a new communication paradigm for passive Internet-of-Things. https://arxiv.org/abs/1810.13068 ![]() [34]Lu L, Li GY, Swindlehurst AL, et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J Sel Top Signal Process, 8(5):742-758. ![]() [35]Ma HB, Zhang P, Yang F, et al., 2022. Reflections on reconfigurable intelligent surface technology. ZTE Technol J, 28(3):70-77(in Chinese). ![]() [36]Mizmizi M, Ayoubi RA, Tagliaferri D, et al., 2023. Conformal metasurfaces: a novel solution for vehicular communications. IEEE Trans Wirel Commun, 22(4):2804-2817. ![]() [37]Mu XD, Liu YW, Guo L, et al., 2020. Exploiting intelligent reflecting surfaces in NOMA networks: joint beamforming optimization. IEEE Trans Wirel Commun, 19(10):6884-6898. ![]() [38]Mu XD, Liu YW, Guo L, et al., 2021. Joint deployment and multiple access design for intelligent reflecting surface assisted networks. IEEE Trans Wirel Commun, 20(10):6648-6664. ![]() [39]Özdogan Ö, Björnson E, Larsson EG, 2020. Intelligent reflecting surfaces: physics, propagation, and pathloss modeling. IEEE Wirel Commun Lett, 9(5):581-585. ![]() [40]Pan CH, Ren H, Wang KZ, et al., 2021. Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun Mag, 59(6):14-20. ![]() [41]Park SH, Kim B, Kim DK, et al., 2023. Beam squint in ultra-wideband mmWave systems: RF lens array vs. phase-shifter-based array. IEEE Wirel Commun, 30(4):82-89. ![]() [42]Ratnam VV, Mo JH, Alammouri A, et al., 2022. Joint phase-time arrays: a paradigm for frequency-dependent analog beamforming in 6G. IEEE Access, 10:73364-73377. ![]() [43]Rotman R, Tur M, Yaron L, 2023. True time delay in phased arrays. Proc IEEE, 104(3):504-518. ![]() [44]Taha A, Alrabeiah M, Alkhateeb A, 2021. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access, 9:44304-44321. ![]() [45]Tang WK, Dai JY, Chen MZ, et al., 2019. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electr Lett, 55(7):417-420. ![]() [46]Tang WK, Dai JY, Cehn MZ, et al., 2020. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. IEEE J Sel Areas Commun, 38(11):2683-2699. ![]() [47]van Huynh N, Hoang DT, Lu X, et al., 2018. Ambient backscatter communications: a contemporary survey. IEEE Commun Surv Tut, 20(4):2889-2922. ![]() [48]Wang D, Tan YH, Yin LZ, et al., 2019. A subwavelength 1-bit broadband reconfigurable reflectarray element based on slotting technology. Proc Int Applied Computational Electromagnetics Society Symp-China, p.1-2. ![]() [49]Wei XH, Shen DC, Dai LL, 2021. Channel estimation for RIS assisted wireless communications—part II: an improved solution based on double-structured sparsity. IEEE Commun Lett, 25(5):1403-1407. ![]() [50]Wu QQ, Zhou XB, Schober R, 2021. IRS-assisted wireless powered NOMA: do we really need different phase shifts in DL and UL?IEEE Wirel Commun Lett, 10(7):1493-1497. ![]() [51]Xu HQ, Zhao YJ, Mo LM, et al., 2012. Inter-cell antenna calibration for coherent joint transmission in TDD system. Proc IEEE Globecom Workshops, p.297-301. ![]() [52]Yan H, Boljanovic V, Cabric D, 2019. Wideband millimeter-Wave beam training with true-time-delay array architecture. Proc 53rd Asilomar Conf on Signals, Systems, and Computers, p.1447-1452. ![]() [53]Yang G, Liang YC, Zhang R, et al., 2018. Modulation in the air: backscatter communication over ambient OFDM carrier. IEEE Trans Commun, 66(3):1219-1233. ![]() [54]Yang G, Xu XY, Liang YC, et al., 2021. Reconfigurable intelligent surface-assisted non-orthogonal multiple access. IEEE Trans Wirel Commun, 20(5):3137-3151. ![]() [55]Yuan J, Wen MW, Li Q, et al., 2021. Receive quadrature reflecting modulation for RIS-empowered wireless communications. IEEE Trans Veh Technol, 70(5):5121-5125. ![]() [56]Yuan YF, Zhao YJ, Zong BQ, et al., 2020. Potential key technologies for 6G mobile communications. Sci China Inform Sci, 63(8):183301. ![]() [57]Zhang DC, Wu QQ, Cui M, et al., 2021. Throughput maximization for IRS-assisted wireless powered hybrid NOMA and TDMA. IEEE Wirel Commun Lett, 10(9):1944-1948. ![]() [58]Zhang L, Chen MZ, Tang WK, et al., 2021. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electr, 4(3):218-227. ![]() [59]Zhang YW, Shen KM, Ren SY, et al., 2022. Configuring intelligent reflecting surface with performance guarantees: optimal beamforming. IEEE J Sel Top Signal Process, 16(5):967-979. ![]() [60]Zhang ZJ, Dai LL, Chen XB, et al., 2023. Active RIS vs. passive RIS: which will prevail in 6G?IEEE Trans Commun, 71(3):1707-1725. ![]() [61]Zhao MM, Wu QQ, Zhao MJ, et al., 2021. Exploiting amplitude control in intelligent reflecting surface aided wireless communication with imperfect CSI. IEEE Trans Commun, 69(6):4216-4231. ![]() [62]Zhao YJ, Jian MN, 2022. Applications and challenges of reconfigurable intelligent surface for 6G networks. ![]() [63]Zhao YJ, Lv X, 2022. Network coexistence analysis of RIS-assisted wireless communications. IEEE Access, 10:63442-63454. ![]() [64]Zhao YJ, Yu GH, Xu HQ, 2019. 6G mobile communication networks: vision, challenges, and key technologies. Sci Sin Inform, 49(8):963-987(in Chinese). ![]() [65]Zhao YJ, Zhang JY, Ai B, 2021. Applications of reconfigurable intelligent surface in smart high-speed railway communications. ZTE Technol J, 27(4):36-43(in Chinese). ![]() [66]Zhu GX, Huang KB, Lau VKN, et al., 2017. Hybrid beamforming via the Kronecker decomposition for the millimeter-Wave massive MIMO systems. IEEE J Sel Areas Commun, 35(9):2097-2114. ![]() [67]Zhu JA, Liu KZ, Wan ZZC, et al., 2023. Sensing RISs: enabling dimension-independent CSI acquisition for beamforming. IEEE Trans Inform Theory, 69(6):3795-3813. ![]() [68]ZTE, 2021. RP-213700 New SI: Study on NR network-controlled Repeaters, 3GPP TSG RAN Meeting #94e, Electronic Meeting. ![]() [69]Zuo JK, Liu YW, Qin ZJ, et al., 2020. Resource allocation in intelligent reflecting surface assisted NOMA systems. IEEE Trans Commun, 68(11):7170-7183. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>