CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-02-20
Cited: 0
Clicked: 2058
Jie ZHOU, Pei KE, Xipeng QIU, Minlie HUANG, Junping ZHANG. ChatGPT: potential, prospects, and limitations[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300089 @article{title="ChatGPT: potential, prospects, and limitations", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bai YT, Jones A, Ndousse K, et al., 2022. Training a helpful and harmless assistant with reinforcement learning from human feedback. https://arxiv.org/abs/2204.05862 ![]() [2]Brooks RA, 1991. Intelligence without representation. Artif Intell, 47(1-3):139-159. ![]() [3]Brown TB, Mann B, Ryder N, et al., 2020. Language models are few-shot learners. Proc 34th Int Conf on Neural Information Processing Systems, p.1877-1901. ![]() [4]Chen M, Tworek J, Jun H, et al., 2021. Evaluating large language models trained on code. https://arxiv.org/abs/2107.03374 ![]() [5]Chowdhery A, Narang S, Devlin J, 2022. PaLM: scaling language modeling with pathways. https://arxiv.org/abs/2204.02311 ![]() [6]Devlin J, Chang MW, Lee K, et al., 2019. BERT: pre-training of deep bidirectional transformers for language understanding. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.4171-4186. ![]() [7]Fedus W, Zoph B, Shazeer N, et al., 2022. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. J Mach Learn Res, 23(120):1-39. ![]() [8]Glaese A, McAleese N, Trebacz M, et al., 2022. Improving alignment of dialogue agents via targeted human judgements. https://arxiv.org/abs/2209.14375 ![]() [9]Hoffmann J, Borgeaud S, Mensch A, et al., 2022. Training compute-optimal large language models. https://arxiv.org/abs/2203.15556 ![]() [10]Hu K, 2023. ChatGPT Sets Record for Fastest-Growing User Base—Analyst Note. https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/ [Accessed on Feb. 12, 2023]. ![]() [11]Huang J, Mo ZB, Zhang ZY, et al., 2022. Behavioral control task supervisor with memory based on reinforcement learning for human-multi-robot coordination systems. Front Inform Technol Electron Eng, 23(8):1174-1188. ![]() [12]Li L, Lin YL, Zheng NN, et al., 2017. Parallel learning: a perspective and a framework. IEEE/CAA J Autom Sin, 4(3):389-395. ![]() [13]Lighthill J, 1973. Artificial intelligence: a general survey. In: Artificial Intelligence: a Paper Symposium. Science Research Council, London, UK. ![]() [14]Moravec H, 1988. Mind Children. Harvard University Press, Cambridge, USA. ![]() [15]Ouyang L, Wu J, Jiang X, et al., 2022. Training language models to follow instructions with human feedback. https://arxiv.org/abs/2203.02155 ![]() [16]Rae JW, Borgeaud S, Cai T, et al., 2021. Scaling language models: methods, analysis & insights from training Gopher. https://arxiv.org/abs/2112.11446 ![]() [17]Sanh V, Webson A, Raffel C, et al., 2021. Multitask prompted training enables zero-shot task generalization. 10th Int Conf on Learning Representations. ![]() [18]Schulman J, Wolski F, Dhariwal P, et al., 2017. Proximal policy optimization algorithms. https://arxiv.org/abs/1707.06347 ![]() [19]Schulman J, Zoph B, Kim C, et al., 2022. ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/blog/chatgpt [Accessed on Feb. 12, 2023]. ![]() [20]Stiennon N, Ouyang L, Wu J, et al., 2020. Learning to summarize from human feedback. Proc 34th Int Conf on Neural Information Processing Systems, p.3008-3021. ![]() [21]Sun Y, Wang SH, Feng SK, et al., 2021. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation. https://arxiv.org/abs/2107.02137 ![]() [22]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. ![]() [23]Wang FY, Guo JB, Bu GQ, et al., 2022. Mutually trustworthy human-machine knowledge automation and hybrid augmented intelligence: mechanisms and applications of cognition, management, and control for complex systems. Front Inform Technol Electron Eng, 23(8):1142-1157. ![]() [24]Wang FY, Miao QH, Li X, et al., 2023. What does chatGPT say: the DAO from algorithmic intelligence to linguistic intelligence. IEEE/CAA J Autom Sin, 10(3):575-579. ![]() [25]Wang YZ, Kordi Y, Mishra S, et al., 2022. Self-Instruct: aligning language model with self generated instructions. https://arxiv.org/abs/2212.10560 ![]() [26]Wei J, Bosma M, Zhao VY, et al., 2021. Finetuned language models are zero-shot learners. 10th Int Conf on Learning Representations. ![]() [27]Wei J, Wang XZ, Schuurmans D, et al., 2022a. Chain-of-thought prompting elicits reasoning in large language models. https://arxiv.org/abs/2201.11903 ![]() [28]Wei J, Tay Y, Bommasani R, et al., 2022b. Emergent abilities of large language models. https://arxiv.org/abs/2206.07682 ![]() [29]Weigang L, Enamoto LM, Li DL, et al., 2022. New directions for artificial intelligence: human, machine, biological, and quantum intelligence. Front Inform Technol Electron Eng, 23(6):984-990. ![]() [30]Xue JR, Hu B, Li LX, et al., 2022. Human-machine augmented intelligence: research and applications. Front Inform Technol Electron Eng, 23(8):1139-1141. ![]() [31]Zeng W, Ren XZ, Su T, et al., 2021. PanGu-α: large-scale autoregressive pretrained Chinese language models with auto-parallel computation. https://arxiv.org/abs/2104.12369 ![]() [32]Zhang ZY, Gu YX, Han X, et al., 2021. CPM-2: large-scale cost-effective pre-trained language models. AI Open, 2:216-224. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>