
CLC number: TP393
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-08-09
Cited: 0
Clicked: 3866
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0001-6096-2039
https://orcid.org/0009-0006-5747-2115
Yuexia FU, Jing WANG, Lu LU, Qinqin TANG, Sheng ZHANG. Reputation-based joint optimization of user satisfaction and resource utilization in a computing force network[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300156 @article{title="Reputation-based joint optimization of user satisfaction and resource utilization in a computing force network", %0 Journal Article TY - JOUR
基于声誉机制的算力网络资源利用率和用户满意度联合优化1中国移动通信有限公司研究院,中国北京市,100053 2紫金山实验室,中国南京市,211111 3中国移动通信集团有限公司,中国北京市,100033 摘要:随着算力和网络融合的发展,在算力网络(CFN)中统筹考虑多个提供商的算力资源和网络资源逐渐成为一种新趋势。然而,由于每个算网资源提供商(CNRP)只考虑自身利益,与其他CNRP存在竞争关系,因此引入多个CNRP会造成缺乏信任和难以统一调度的问题。此外,多个并发用户的需求各不相同,因此迫切需要研究如何在多对多的基础上优化匹配用户和CNRP,从而提高用户满意度,保证和提高有限资源的利用率。首先采用基于贝塔分布函数的声誉模型衡量CNRP可信度,并提出基于性能的声誉更新模型。其次,将问题形式化为一个约束多目标优化问题,并使用改进的快速精英非支配排序遗传算法(NSGA-II)找到可行解。本文进行大量仿真实验评估所提算法。仿真结果表明,所提模型、问题表述、和NSGA-II是有效的,NSGA-II可以找到CFN的帕累托集,提高用户满意度和资源利用率。此外,帕累托集所提供的一组解决方案根据实际情况为用户和CNRP的多对多匹配问题提供更多选择。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abbas N, Zhang Y, Taherkordi A, et al., 2017. Mobile edge computing: a survey. IEEE Int Things J, 5(1):450-465. ![]() [2]Bao QZ, Ren XX, Liu CF, et al., 2021. Resource trading with hierarchical game for computing-power network market. Proc 5th Int Joint Conf, p.94-109. ![]() [3]Benblidia MA, Brik B, Merghem-Boulahia L, et al., 2019. Ranking fog nodes for tasks scheduling in fog-cloud environments: a fuzzy logic approach. Proc 15th Int Wireless Communications & Mobile Computing Conf, p.1451-1457. ![]() [4]Buchegger S, Le Boudec JY, 2002. Performance analysis of the CONFIDANT protocol. Proc 3rd ACM Int Symp on Mobile Ad Hoc Networking & Computing, p.226-236. ![]() [5]Buchegger S, Le Boudec JY, 2003a. Coping with False Accusations in Misbehavior Reputation Systems for Mobile Ad-Hoc Networks. EPFL Technical Report IC/2003/31, Elsevier, Lausanne, Switzerland. ![]() [6]Buchegger S, Le Boudec JY, 2003b. The effect of rumor spreading in reputation systems for mobile ad-hoc networks. Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Article 10. ![]() [7]Chaitra T, Agrawal S, Jijo J, et al., 2020. Multi-objective optimization for dynamic resource provisioning in a multi-cloud environment using lion optimization algorithm. Proc 20th Int Symp on Computational Intelligence and Informatics, p.000083-000090. ![]() [8]Chen YF, Li ZY, Yang B, et al., 2020. A Stackelberg game approach to multiple resources allocation and pricing in mobile edge computing. Fut Gener Comput Syst, 108:273-287. ![]() [9]Cui LZ, Xu C, Yang S, et al., 2019. Joint optimization of energy consumption and latency in mobile edge computing for Internet of Things. IEEE Int Things J, 6(3):4791-4803. ![]() [10]Deb K, Pratap A, Agarwal S, et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6(2):182-197. ![]() [11]Di Z, Luo T, Qiu C, et al., 2023. In-network pooling: contribution-aware allocation optimization for computing power network in B5G/6G era. IEEE Trans Netw Sci Eng, 10(3):1190-1202. ![]() [12]Dong YQ, Guan CC, Chen YL, et al., 2022. Optimization of service scheduling in computing force network. Int Conf on Service Science, p.147-153. ![]() [13]Du ZP, Li ZQ, Duan XD, et al., 2022. Service information informing in computing aware networking. Int Conf on Service Science, p.125-130. ![]() [14]Fang WD, Zhang CL, Shi ZD, et al., 2016. BTRES: beta-based trust and reputation evaluation system for wireless sensor networks. J Netw Comput Appl, 59:88-94. ![]() [15]Fortes JAB, 2010. Sky computing: when multiple clouds become one. Proc 10th IEEE/ACM Int Conf on Cluster, Cloud and Grid Computing, Article 4. ![]() [16]Ganeriwal S, Balzano LK, Srivastava MB, 2008. Reputation-based framework for high integrity sensor networks. ACM Trans Sens Netw, 4(3):1-37. ![]() [17]Gelman A, Carlin JB, Stern HS, et al., 1995. Bayesian Data Analysis. Chapman and Hall/CRC, New York, USA. ![]() [18]Jara EC, 2014. Multi-objective optimization by using evolutionary algorithms: the p-optimality criteria. IEEE Trans Evol Comput, 18(2):167-179. ![]() [19]Josang A, Ismail R, 2002. The beta reputation system. Proc 15th Bled Electronic Commerce Conf, p.502-2511. ![]() [20]Kan TY, Chiang Y, Wei HY, 2018. Task offloading and resource allocation in mobile-edge computing system. Proc 27th Wireless and Optical Communication Conf, p.1-4. ![]() [21]Kang KX, Ding D, Xie HM, et al., 2022. Adaptive DRL-based task scheduling for energy-efficient cloud computing. IEEE Trans Netw Serv Manag, 19(4):4948-4961. ![]() [22]Li F, Seok MG, Cai WT, 2021. A new double rank-based multi-workflow scheduling with multi-objective optimization in cloud environments. IEEE Int Parallel and Distributed Processing Symp Workshops, p.36-45. ![]() [23]Liu B, Mao JW, Xu L, et al., 2021. CFN-dyncast: load balancing the edges via the network. IEEE Wireless Communications and Networking Conf Workshops, p.1-6. ![]() [24]Liu L, Fan Q, Buyya R, 2018. A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments. IEEE Access, 6:52982-52996. ![]() [25]Liu XL, Jia SW, 2019. An iterative reputation ranking method via the beta probability distribution. IEEE Access, 7:540-547. ![]() [26]Mao YY, You CS, Zhang J, et al., 2017. A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tut, 19(4):2322-2358. ![]() [27]Miriyala SS, Subramanian VR, Mitra K, 2018. TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur J Oper Res, 264(1):294-309. ![]() [28]Monteiro A, Teixeira C, Pinto JS, 2014. Sky computing: exploring the aggregated cloud resources—part II. Proc 9th Iberian Conf on Information Systems and Technologies, p.1-6. ![]() [29]Mostafa HA, El-Shatshat R, Salama MMA, 2013. Multi-objective optimization for the operation of an electric distribution system with a large number of single phase solar generators. IEEE Trans Smart Grid, 4(2):1038-1047. ![]() [30]Niu XX, Wang HC, Hu S, et al., 2018. Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine. Appl Therm Eng, 137:218-227. ![]() [31]Peng CD, Liu HL, Gu FQ, 2017. An evolutionary algorithm with directed weights for constrained multi-objective optimization. Appl Soft Comput, 60:613-622. ![]() [32]Rehani N, Garg R, 2018. Meta-heuristic based reliable and green workflow scheduling in cloud computing. Int J Syst Assur Eng Manag, 9(4):811-820. ![]() [33]Resnick P, Zeckhauser R, 2002. Trust among strangers in Internet transactions: empirical analysis of eBay’s reputation system. In: Baye M (Ed.), The Economics of the Internet and E-Commerce. Emerald Group Publishing Limited, Bingley, England, p.127-157. ![]() [34]Resnick P, Kuwabara K, Zeckhauser R, et al., 2000. Reputation systems. Commun ACM, 43(12):45-48. ![]() [35]Song ZD, Sun HG, Yang HH, et al., 2022. Reputation-based federated learning for secure wireless networks. IEEE Int Things J, 9(2):1212-1226. ![]() [36]Stoica I, Shenker S, 2021. From cloud computing to sky computing. Proc Workshop on Hot Topics in Operating Systems, p.26-32. ![]() [37]Tang XY, Cao C, Wang YX, et al., 2021. Computing power network: the architecture of convergence of computing and networking towards 6G requirement. China Commun, 18(2):175-185. ![]() [38]Tian L, Yang MZ, Wang SG, 2021. An overview of compute first networking. Int J Web Grid Serv, 17(2):81-97. ![]() [39]Xiong L, Liu L, 2004. PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities. IEEE Trans Knowl Data Eng, 16(7):843-857. ![]() [40]Yao HJ, Lu L, Duan XD, 2021. Architecture and key technologies for computing-aware networking. ZTE Technol J, 27(3):7-11(in Chinese). ![]() [41]Yuan HT, Bi J, Zhou MC, et al., 2021. Biobjective task scheduling for distributed green data centers. IEEE Trans Autom Sci Eng, 18(2):731-742. ![]() [42]Zhang P, Peng MG, Cui SG, et al., 2022. Theory and techniques for "intellicise" wireless networks. Front Inform Technol Electron Eng, 23(1):1-4. ![]() [43]Zou Y, Shen F, Yan F, et al., 2021. Reputation-based regional federated learning for knowledge trading in blockchain-enhanced IoV. IEEE Wireless Communications and Networking Conf, p.1-6. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>