CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-10-22
Cited: 0
Clicked: 2710
Citations: Bibtex RefMan EndNote GB/T7714
Yuxin HUANG, Huailing GU, Zhengtao YU, Yumeng GAO, Tong PAN, Jialong XU. Enhancing low-resource cross-lingual summarization from noisy data with fine-grained reinforcement learning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300296 @article{title="Enhancing low-resource cross-lingual summarization from noisy data with fine-grained reinforcement learning", %0 Journal Article TY - JOUR
基于细粒度强化学习增强噪声数据的低资源跨语言摘要1昆明理工大学信息工程与自动化学院,中国昆明市,650504 2昆明理工大学云南省人工智能重点实验室,中国昆明市,650504 摘要:跨语言摘要是从源语言文档生成目标语言摘要的任务。最近,端到端跨语言摘要模型通过使用大规模、高质量数据集取得令人瞩目的结果,这些数据集通常是通过将单语摘要语料库翻译成跨语言摘要语料库而构建的。然而,由于低资源语言翻译模型性能有限,翻译噪声会严重降低模型性能。提出一种细粒度强化学习方法解决基于噪声数据的低资源跨语言摘要问题。引入源语言摘要作为黄金信号,减轻翻译后噪声目标摘要的影响。具体来说,通过计算源语言摘要和生成目标语言摘要之间的词相关性和词缺失度设计强化奖励,并将其与交叉熵损失相结合优化跨语言摘要模型。为验证所提出模型性能,构建汉语-越南语和越南语-汉语跨语言摘要数据集。实验结果表明,所提出模型在ROUGE分数和BERTScore方面优于其他基线。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ayana, Shen SQ, Chen Y, et al., 2018. Zero-shot cross-lingual neural headline generation. IEEE/ACM Trans Audio Speech Lang Process, 26(12):2319-2327. ![]() [2]Bai Y, Gao Y, Huang HY, 2021. Cross-lingual abstractive summarization with limited parallel resources. Proc 59th Annual Meeting of the Association for Computational Linguistics and the 11th Int Joint Conf on Natural Language Processing, p.6910-6924. ![]() [3]Böhm F, Gao Y, Meyer CM, et al., 2019. Better rewards yield better summaries: learning to summarise without references. Proc Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing, p.3110-3120. ![]() [4]Cao Y, Liu H, Wan XJ, 2020. Jointly learning to align and summarize for neural cross-lingual summarization. Proc 58th Annual Meeting of the Association for Computational Linguistics, p.6220-6231. ![]() [5]Dou ZY, Kumar S, Tsvetkov Y, 2020. A deep reinforced model for zero-shot cross-lingual summarization with bilingual semantic similarity rewards. Proc 4th Workshop on Neural Generation and Translation, p.60-68. ![]() [6]Dyer C, Chahuneau V, Smith NA, 2013. A simple, fast, and effective reparameterization of IBM Model 2. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.644-648. ![]() [7]Hermann KM, Kočiský T, Grefenstette E, et al., 2015. Teaching machines to read and comprehend. Proc 28th Int Conf on Neural Information Processing Systems, p.1693-1701. ![]() [8]Hu BT, Chen QC, Zhu FZ, 2015. LCSTS: a large scale Chinese short text summarization dataset. Proc Conf on Empirical Methods in Natural Language Processing, p.1967-1972. ![]() [9]Javed A, Ali Khan A, 2022. Shot classification and replay detection for sports video summarization. Front Inform Technol Electron Eng, 23(5):790-800. ![]() [10]Jiang SY, Tu DB, Chen XS, et al., 2022. ClueGraphSum: let key clues guide the cross-lingual abstractive summarization. https://arxiv.org/abs/2203.02797 ![]() [11]Kang XM, Zhao Y, Zhang JJ, et al., 2020. Dynamic context selection for document-level neural machine translation via reinforcement learning. Proc Conf on Empirical Methods in Natural Language Processing, p.2242-2254. ![]() [12]Kim S, Jang JY, Jung M, et al., 2021. A model of cross-lingual knowledge-grounded response generation for open-domain dialogue systems. Findings of the Association for Computational Linguistics, p.352-365. ![]() [13]Kumar G, Foster G, Cherry C, et al., 2019. Reinforcement learning based curriculum optimization for neural machine translation. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.2054-2061. ![]() [14]Lai H, Gao YM, Huang YX, et al., 2022. Evaluation method of text generation based on multi-granularity feature. J Chin Inform Process, 36(3):45-53,63(in Chinese). ![]() [15]Leuski A, Lin CY, Zhou L, et al., 2003. Cross-lingual C*ST*RD: English access to Hindi information. ACM Trans Asian Lang Inform Process, 2(3):245-269. ![]() [16]Li HQ, Huang J, Cao Z, et al., 2023. Stochastic pedestrian avoidance for autonomous vehicles using hybrid reinforcement learning. Front Inform Technol Electron Eng, 24(1):131-140. ![]() [17]Li P, Tang C, Xu XH, 2021. Video summarization with a graph convolutional attention network. Front Inform Technol Electron Eng, 22(6):902-913. ![]() [18]Liang YL, Meng FD, Zhou CL, et al., 2022. A variational hierarchical model for neural cross-lingual summarization. Proc 60th Annual Meeting of the Association for Computational Linguistics, p.2088-2099. ![]() [19]Lim JM, Kang IS, Lee JH, 2004. Multi-document summarization using cross-language texts. Proc NTCIR-4. ![]() [20]Lin CY, 2004. ROUGE: a package for automatic evaluation of summaries. Proc 4th Workshop on Annual Meeting of the Association for Computational Linguistics, p.74-81. ![]() [21]Nguyen TT, Luu AT, 2022. Improving neural cross-lingual abstractive summarization via employing optimal transport distance for knowledge distillation. Proc 36th AAAI Conf on Artificial Intelligence, 36(10):11103-11111. ![]() [22]Orǎsan C, Chiorean OA, 2008. Evaluation of a cross-lingual Romanian-English multi-document summariser. Proc Int Conf on Language Resources and Evaluation. ![]() [23]Ouyang J, Song BY, McKeown K, 2019. A robust abstractive system for cross-lingual summarization. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.2025-2031. ![]() [24]Paulus R, Xiong CM, Socher R, 2017. A deep reinforced model for abstractive summarization. https://arxiv.org/abs/1705.04304 ![]() [25]Rennie SJ, Marcheret E, Mroueh Y, et al., 2017. Self-critical sequence training for image captioning. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1179-1195. ![]() [26]Rippeth E, Post M, 2022. Additive interventions yield robust multi-domain machine translation models. Proc 7th Conf on Machine Translation, p.220-232. ![]() [27]Takase S, Okazaki N, 2020. Multi-task learning for cross-lingual abstractive summarization. https://arxiv.org/abs/2010.07503 ![]() [28]Unanue IJ, Parnell J, Piccardi M, 2021. BERTTune: fine-tuning neural machine translation with BERTScore. https://arxiv.org/abs/2106.02208 ![]() [29]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. ![]() [30]Wang JA, Meng FD, Lu ZY, et al., 2022. ClidSum: a benchmark dataset for cross-lingual dialogue summarization. Proc Conf on Empirical Methods in Natural Language Processing, p.7716-7729. ![]() [31]Wu LJ, Zhu JH, He D, et al., 2019. Machine translation with weakly paired documents. Proc Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing, p.4375-4384. ![]() [32]Xiong LL, Tang Y, Liu CS, et al., 2023. A home energy management approach using decoupling value and policy in reinforcement learning. Front Inform Technol Electron Eng, 24(9):1261-1272. ![]() [33]Yoon W, Yeo YS, Jeong M, et al., 2021. Learning by semantic similarity makes abstractive summarization better. https://arxiv.org/abs/2002.07767 ![]() [34]You YJ, Jia WJ, Liu TY, et al., 2019. Improving abstractive document summarization with salient information modeling. Proc 57th Annual Meeting of the Association for Computational Linguistics, p.2132-2141. ![]() [35]Zhang TY, Kishore V, Wu F, et al., 2020. BERTScore: evaluating text generation with BERT. https://arxiv.org/abs/1904.09675 ![]() [36]Zhao H, Xie J, Lv Y, et al., 2013. Common error analysis of machine translation output. The 9th China Workshop on Machine Translation. ![]() [37]Zhao J, Zhao YP, Wang WX, et al., 2022. Coach-assisted multi-agent reinforcement learning framework for unexpected crashed agents. Front Inform Technol Electron Eng, 23(7):1032-1042. ![]() [38]Zhou J, Ke P, Qiu XP, et al., 2023. ChatGPT: potential, prospects, and limitations. Front Inform Technol Electron Eng, early access. ![]() [39]Zhu JN, Wang Q, Wang YN, et al., 2019. NCLS: neural cross-lingual summarization. Proc Conf on Empirical Methods in Natural Language Processing and the 9th Int Joint Conf on Natural Language Processing, p.3054-3064. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>