CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-09-29
Cited: 0
Clicked: 2070
Ruihui PENG, Jie LAI, Xueting YANG, Dianxing SUN, Shuncheng TAN, Yingjuan SONG, Wei GUO. Camouflaged target detection based on multimodal image input pixel-level fusion[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300503 @article{title="Camouflaged target detection based on multimodal image input pixel-level fusion", %0 Journal Article TY - JOUR
基于多模态图像输入端像素级融合的伪装目标检测1哈尔滨工程大学青岛创新发展基地,中国青岛市,266000 2哈尔滨工程大学信息与通信工程学院,中国哈尔滨市,150001 3海军航空大学信息融合研究所,中国烟台市,264001 摘要:伪装目标是一种前景和背景高度融合、目标特征信息极少的非显著目标,给目标识别带来极大困难。大多数伪装目标检测算法仅使用目标的单波段信息,导致检测精度低、漏检率高。本文提出一种多模态图像融合伪装目标检测技术(MIF-YOLOv5)。首先,通过多模态图像输入端实现伪装目标的光学和红外图像的像素级融合,增强伪装目标的有效特征信息。其次,创建损失函数,并利用K-Means++聚类算法优化数据集中的目标锚框,提高伪装人员的检测精度和算法鲁棒性。最后,提出伪装目标的综合检测指标,以比较各种方法的综合检测效果。更重要的是,创建了一个多光谱伪装目标数据集来测试所提技术。实验结果表明,所提方法综合检测性能最佳,其检测精度为96.5%,识别概率为92.5%,模型参数增加1×104,理论计算量增加0.03 GFLOPs,伪装目标综合检测指数为0.85。与其他目标算法相比,该方法在检测精度上的优势显而易见。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bhajantri NU, Nagabhushan P, 2006. Camouflage defect identification: a novel approach. Proc 9th Int Conf on Information Technology, p.145-148. ![]() [2]Bochkovskiy A, Wang CY, Liao HY, et al., 2020. YOLOv4: optimal speed and accuracy of object detection. https://arxiv.org/abs/2004.10934 ![]() [3]Cheng XL, Geng KK, Wang ZW, et al., 2023. SLBAF-Net: super-lightweight bimodal adaptive fusion network for UAV detection in low recognition environment. Multim Tools Appl, 82(30):47773-47792. ![]() [4]Cheng Y, Hao HZ, Ji Y, et al., 2022. Attention-based neighbor selective aggregation network for camouflaged object detection. Proc Int Joint Conf on Neural Networks, p.1-8. ![]() [5]Fan DP, Ji GP, Sun GL, et al., 2020a. Camouflaged object detection. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2777-2787. ![]() [6]Fan DP, Ji GP, Zhou T, et al., 2020b. PraNet: parallel reverse attention network for polyp segmentation. Proc 23rd Int Conf on Medical Image Computing and Computer-Assisted Intervention, p.263-273. ![]() [7]Fang QY, Han DP, Wang ZK, 2021. Cross-modality fusion Transformer for multispectral object detection. https://arxiv.org/abs/2111.00273 ![]() [8]Gevorgyan Z, 2022. SIoU loss: more powerful learning for bounding box regression. https://arxiv.org/abs/2205.12740 ![]() [9]Girshick R, 2015. Fast R-CNN. Proc IEEE Int Conf on Computer Vision, p.1440-1448. ![]() [10]Girshick R, Donahue J, Darrell T, et al., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.580-587. ![]() [11]Hu JH, Cui GZ, Qin L, 2015. A new method of multispectral image processing with camouflage effect detection. Proc SPIE 9675, Image Processing and Analysis, Article 967510. ![]() [12]Liang XY, Lin HK, Yang H, et al., 2021. Construction of semantic segmentation dataset of camouflage target image. Lasers Optoelectron Prog, 58(4):0410015 (in Chinese). ![]() [13]Lin ZY, Goyal P, Girshick R, et al., 2020. Focal loss for dense object detection. IEEE Trans Patt Anal Mach Intell, 42(2):318-327. ![]() [14]Liu CX, 2022. Research on the Fusion Algorithms of Infrared and Visible Image. MS Thesis, Lanzhou Jiaotong University, Lanzhou, China (in Chinese). ![]() [15]Liu W, Anguelov D, Erhan D, et al., 2016. SSD: single shot multibox detector. Proc 14th European Conf on Computer Vision, p.21-37. ![]() [16]Lv YQ, Zhang J, Dai YC, et al., 2021. Simultaneously localize, segment and rank the camouflaged objects. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11591-11601. ![]() [17]Putatunda R, Gangopadhyay A, Erbacher RF, et al., 2022. Camouflaged object detection system at the edge. Proc SPIE 12096, Automatic Target Recognition XXXII, Article 120960I. ![]() [18]Qi B, 2022. Research on Fusion of Infrared and Visible Light Image Based on Co-occurrence Analysis Shearlet Transform. MS Thesis, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China (in Chinese). ![]() [19]Redmon J, Farhadi A, 2017. YOLO9000: better, faster, stronger. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.7263-7271. ![]() [20]Redmon J, Divvala S, Girshick R, et al., 2016. You only look once: unified, real-time object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.779-788. ![]() [21]Sun XH, Guan Z, Wang X, 2023. Vision Transformer for fusing infrared and visible images in groups. J Image Graph, 28(1):166-178 (in Chinese). ![]() [22]Tan XY, Hu X, Yang JX, et al., 2022. Camouflaged object detection based on progressive feature enhancement aggregation. J Comput Appl, 42(7):2192-2200 (in Chinese). ![]() [23]Wu GJ, Lyu XL, Xing HN, et al., 2015. Application of three-dimensional convex analysis in pattern painting camouflage detection. J PLA Univ Sci Technol (Nat Sci Ed), 16(6):582-586 (in Chinese). ![]() [24]Yadav D, Arora MK, Tiwari KC, et al., 2018. Detection and identification of camouflaged targets using hyperspectral and LiDAR data. Def Sci J, 68(6):540-546. ![]() [25]Zhang W, Zhou QK, Li RZ, et al., 2022. Research on camouflaged human target detection based on deep learning. Comput Intell Neurosci, 2022:7703444. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>