CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-09-29
Cited: 0
Clicked: 2561
Citations: Bibtex RefMan EndNote GB/T7714
Wanghui DING, Kaiwei SUN, Mengfei YU, Hangzheng LIN, Yang FENG, Jianhua LI, Zuozhu LIU. Accurate estimation of 6-DoF tooth pose in 3D intraoral scans for dental applications using deep learning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300596 @article{title="Accurate estimation of 6-DoF tooth pose in 3D intraoral scans for dental applications using deep learning", %0 Journal Article TY - JOUR
基于深度学习的口腔三维扫描中六方位自由度牙齿姿态准确估算1浙江大学医学院附属口腔医院·浙江大学口腔医学院·浙江省口腔疾病临床医学研究中心·浙江省口腔生物医学研究重点实验室·浙江大学癌症研究院·口腔生物材料与器械浙江省工程研究中心,中国杭州市,310000 2浙江大学伊利诺伊大学厄巴纳香槟校区联合学院,中国海宁市,314400 3上海时代天使医疗器械有限公司,中国上海市,200433 4杭州口腔医院,中国杭州市,310006 摘要:数字牙科的一个关键步骤是准确、自动地表征牙齿的方向和位置,在此基础上可以辅助制定正畸治疗计划和模拟牙齿排齐。由于不同牙齿之间的几何特征复杂且差异较大,且可靠的大规模数据集尚未构建,表征牙齿的方向和位置仍然具有挑战性。本文提出一种新的牙齿方位自动估算方法,将其表述为六方位自由度的牙齿姿态估算任务。将每个牙齿视为一个三维点云,设计了一个具有特征提取主干和双支路检测头的深度神经网络模型,以估算牙齿姿态。使用新的损失函数训练新收集的大样本数据集(10 393例患者,280 611颗牙齿的扫描数据),在2598例患者(77 870颗牙齿)的数据集上,平均欧拉角误差仅为4.780°–5.979°,平移L1误差为0.663 mm。综合实验表明,98.29%的估算产生的平均角度误差小于15°,这对于大多数临床和工业应用可以接受。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cai M, Reid I, 2020. Reconstruct locally, localize globally: a model free method for object pose estimation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p. 3150-3160. ![]() [2]Chen QM, Wang YH, Shuai J, 2023. Current status and future prospects of stomatology research. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(10):853-867. ![]() [3]Gu CH, Ren XF, 2010. Discriminative mixture-of-templates for viewpoint classification. 11th European Conf on Computer Vision, p.408-421. ![]() [4]Herrmann W, 1967. On the completion of Fédération Dentaire Internationale Specifications. Zahn Mitteil, 57(23):1147-1149 (in German). ![]() [5]Hinterstoisser S, Cagniart C, Ilic S, et al., 2012. Gradient response maps for real-time detection of textureless objects. IEEE Trans Patt Anal Mach Intell, 34(5):876-888. ![]() [6]Kendall A, Grimes M, Cipolla R, 2015. PoseNet: a convolutional network for real-time 6-DOF camera relocalization. Proc IEEE Int Conf on Computer Vision, p.2938-2946. ![]() [7]Li ZG, Wang G, Ji XY, 2019. CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DoF object pose estimation. Proc IEEE/CVF Int Conf on Computer Vision, p.7677-7686. ![]() [8]Liebelt J, Schmid C, Schertler K, 2008. Viewpoint-independent object class detection using 3D feature maps. IEEE Conf on Computer Vision and Pattern Recognition, p.1-8. ![]() [9]Mok V, Ong SH, Foong KWC, et al., 2002. Pose estimation of teeth through crown-shape matching. Proc SPIE 4684, Medical Imaging 2002: Image Processing, p.955-964. ![]() [10]Newell A, Yang KY, Deng J, 2016. Stacked hourglass networks for human pose estimation. 14th European Conf on Computer Vision, p.483-499. ![]() [11]Oberweger M, Rad M, Lepetit V, 2018. Making deep heatmaps robust to partial occlusions for 3D object pose estimation. Proc 15th European Conf on Computer Vision, p.125-141. ![]() [12]Park K, Patten T, Vincze M, 2019. Pix2Pose: pixel-wise coordinate regression of objects for 6D pose estimation. Proc IEEE/CVF Int Conf on Computer Vision, p.7667-7676. ![]() [13]Peng SD, Liu Y, Huang QX, et al., 2019. PVNet: pixel-wise voting network for 6DoF pose estimation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.4556-4565. ![]() [14]Qi CR, Litany O, He KM, et al., 2019. Deep Hough voting for 3D object detection in point clouds. Proc IEEE/CVF Int Conf on Computer Vision, p.9276-9285. ![]() [15]Su H, Qi CR, Li YY, et al., 2015. Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. Proc IEEE Int Conf on Computer Vision, p.2686-2694. ![]() [16]Sun M, Bradski G, Xu BX, et al., 2010. Depth-encoded Hough voting for joint object detection and shape recovery. 11th European Conf on Computer Vision, p.658-671. ![]() [17]Ulrich J, Alsayed A, Arvin F, et al., 2022. Towards fast fiducial marker with full 6 DOF pose estimation. Proc 37th ACM/SIGAPP Symp on Applied Computing, p.723-730. ![]() [18]Wang C, Xu DF, Zhu YK, et al., 2019. DenseFusion: 6D object pose estimation by iterative dense fusion. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3338-3347. ![]() [19]Wang H, Sridhar S, Huang JW, et al., 2019. Normalized object coordinate space for category-level 6D object pose and size estimation. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2637-2646. ![]() [20]Wang Y, Sun YB, Liu ZW, et al., 2019. Dynamic graph CNN for learning on point clouds. ACM Trans Graph, 38(5):146. ![]() [21]Wei GD, Cui MZ, Liu YM, et al., 2020. TANet: towards fully automatic tooth arrangement. 16th European Conf on Computer Vision, p.481-497. ![]() [22]Xiang Y, Schmidt T, Narayanan V, et al., 2018. PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. Proc 14th Robotics: Science and Systems. ![]() [23]Zhou Y, Tuzel O, 2018. VoxelNet: end-to-end learning for point cloud based 3D object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.4490-4499. ![]() [24]Zhou Y, Barnes C, Lu JW, et al., 2019. On the continuity of rotation representations in neural networks. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.5738-5746. ![]() [25]Zhu JJ, Yang YX, Wong HM, 2023. Development and accuracy of artificial intelligence-generated prediction of facial changes in orthodontic treatment: a scoping review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(11):974-984. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>