CLC number: TP309.7
On-line Access: 2025-06-04
Received: 2023-11-08
Revision Accepted: 2024-03-28
Crosschecked: 2025-06-04
Cited: 0
Clicked: 2155
Xintao DUAN, Chun LI, Bingxin WEI, Guoming WU, Chuan QIN, Haewoon NAM. SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300762 @article{title="SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer", %0 Journal Article TY - JOUR
SCFformer:一种基于空间通道融合Transformer的抗JPEG压缩的二进制数据隐藏方法1河南师范大学计算机与信息工程学院,中国新乡市,453007 2河南师范大学人工智能重点实验室,中国新乡市,453007 3汉阳大学电气与电子工程学院,韩国安山市,15588 4上海理工大学光电信息与计算机工程学院,中国上海市,200093 摘要:为增强公共渠道传输过程中信息的安全性,图像常被用于二进制数据隐藏。由于采用联合图像专家组(JPEG)压缩,数据容易失真,恢复原始二进制数据面临挑战。本文提出一种开创性的二进制数据隐藏方法,利用一种结合了空间和通道注意力机制的Transformer模型(称为SCFformer)抵抗JPEG压缩。该方法在隐藏阶段采用一种新颖的离散余弦变换(DCT)量化截断机制,以增强图像的抗JPEG压缩能力,并通过空间和通道注意力机制将数据隐藏到不易察觉的区域,增强模型对隐写分析的抵抗能力。在提取阶段,DCT量化机制最大限度减少压缩过程中秘密图像的丢失,从而更容易实现信息的提取。可扩展模块的整合增加了灵活性,允许可变容量的数据隐藏。实验结果证实所提方案具有高安全性、大容量和高灵活性,同时在JPEG压缩后的二进制数据恢复方面取得显著改进,展示了所提方法的有效性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abood EW, Abdullah AM, Al Sibahe MA, et al., 2022. Audio steganography with enhanced LSB method for securing encrypted text with bit cycling. Bull Electr Eng Inform, 11(1):185-194. ![]() [2]Baluja S, 2020. Hiding images within images. IEEE Trans Patt Anal Mach Intell, 42(7):1685-1697. ![]() [3]Bhinder P, Singh K, Jindal N, 2018. Image-adaptive watermarking using maximum likelihood decoder for medical images. Multim Tools Appl, 77(8):10303-10328. ![]() [4]Boehm B, 2014. StegExpose—a tool for detecting LSB steganography. ![]() [5]Boroumand M, Chen M, Fridrich J, 2019. Deep residual network for steganalysis of digital images. IEEE Trans Inform Foren Secur, 14(5):1181-1193. ![]() [6]Bui T, Agarwal S, Yu N, et al., 2023. RoSteALS: robust steganography using autoencoder latent space. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops, p.933-942. ![]() [7]Chen BJ, Zhou CF, Jeon B, et al., 2018. Quaternion discrete fractional random transform for color image adaptive watermarking. Multim Tools Appl, 77(16):20809-20837. ![]() [8]Guan ZY, Jing JP, Deng X, et al., 2023. DeepMIH: deep invertible network for multiple image hiding. IEEE Trans Patt Anal Mach Intell, 45(1):372-390. ![]() [9]Guo LJ, Ni JQ, Shi YQ, 2012. An efficient JPEG steganographic scheme using uniform embedding. Proc IEEE Int Workshop on Information Forensics and Security, p.169-174. ![]() [10]Guo MH, Xu TX, Liu JJ, et al., 2022. Attention mechanisms in computer vision: a survey. Comput Vis Med, 8(3):331-368. ![]() [11]Harish NJ, Kumar BBS, Kusagur A, 2013. Hybrid robust watermarking techniques based on DWT, DCT and SVD. Int J Adv Electr Electron Eng, 2(5):137-143. ![]() [12]Hayes J, Danezis G, 2017. Generating steganographic images via adversarial training. Proc 31st Int Conf on Neural Information Processing Systems, p.1951-1960. ![]() [13]Holub V, Fridrich J, Denemark T, 2014. Universal distortion function for steganography in an arbitrary domain. EURASIP J Inform Secur, 2014:1. ![]() [14]Horé A, Ziou D, 2010. Image quality metrics: PSNR vs. SSIM. Proc 20th Int Conf on Pattern Recognition, p.2366-2369. ![]() [15]Huang XH, Deng ZF, Li DD, et al., 2023. MISSFormer: an effective Transformer for 2D medical image segmentation. IEEE Trans Med Imaging, 42(5):1484-1494. ![]() [16]Isac B, Santhi V, 2011. A study on digital image and video watermarking schemes using neural networks. Int J Comput Appl, 12(9):1-6. ![]() [17]Jassim FA, 2013. A novel steganography algorithm for hiding text in image using five modulus method. Int J Comput Appl, 72(17):39-44. ![]() [18]Jing JP, Deng X, Xu M, et al., 2021. HiNet: deep image hiding by invertible network. Proc IEEE/CVF Int Conf on Computer Vision, p.4713-4722. ![]() [19]Kim D, Shin C, Choi J, et al., 2023. Diffusion-Stego: training-free diffusion generative steganography via message projection. ![]() [20]Kishore V, Chen XY, Wang Y, et al., 2022. Fixed neural network steganography: train the images, not the network. Proc 10th Int Conf on Learning Representations, p.1. ![]() [21]Li S, Zhang XP, 2019. Toward construction-based data hiding: from secrets to fingerprint images. IEEE Trans Image Process, 28(3):1482-1497. ![]() [22]Li ZZ, Yang XY, Shen KQ, et al., 2023. Adversarial feature hybrid framework for steganography with shifted window local loss. Neur Netw, 164:358-369. ![]() [23]Liu Z, Lin YT, Cao Y, et al., 2021. Swin Transformer: hierarchical vision Transformer using shifted windows. Proc IEEE/CVF Int Conf on Computer Vision, p.9992-10002. ![]() [24]Lu W, Sun W, Lu HT, 2009. Robust watermarking based on DWT and nonnegative matrix factorization. Comput Electr Eng, 35(1):183-188. ![]() [25]Lu W, Zhang JH, Zhao XF, et al., 2021. Secure robust JPEG steganography based on autoencoder with adaptive BCH encoding. IEEE Trans Circ Syst Video Technol, 31(7):2909-2922. ![]() [26]Luo YJ, Zhou TQ, Liu F, et al., 2023. IRWArt: levering watermarking performance for protecting high-quality artwork images. Proc ACM Web Conf, p.2340-2348. ![]() [27]Mallika, Ubhi JS, Aggarwal AK, et al., 2022. Neural style transfer for image within images and conditional GANs for destylization. J Vis Commun Image Represent, 85:103483. ![]() [28]Mou C, Xu YM, Song JC, et al., 2023. Large-capacity and flexible video steganography via invertible neural network. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.22606-22615. ![]() [29]Shang F, Lan YH, Yang JH, et al., 2023. Robust data hiding for JPEG images with invertible neural network. Neur Netw, 163:219-232. ![]() [30]Singh SP, Bhatnagar G, 2018. A new robust watermarking system in integer DCT domain. J Vis Commun Image Represent, 53:86-101. ![]() [31]Singh SP, Rawat P, Agrawal S, 2012. A robust watermarking approach using DCT-DWT. Int J Emerg Technol Adv Eng, 2(8):300-305. ![]() [32]Tao JY, Li S, Zhang XP, et al., 2019. Towards robust image steganography. IEEE Trans Circ Syst Video Technol, 29(2):594-600. ![]() [33]Wei P, Li S, Zhang XP, et al., 2022. Generative steganography network. Proc 30th ACM Int Conf on Multimedia, p.1621-1629. ![]() [34]Xu GS, Wu HZ, Shi YQ, 2016. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett, 23(5):708-712. ![]() [35]Ye J, Ni JQ, Yi Y, 2017. Deep learning hierarchical representations for image steganalysis. IEEE Trans Inform Foren Secur, 12(11):2545-2557. ![]() [36]Ye YX, Shan J, Bruzzone L, et al., 2017. Robust registration of multimodal remote sensing images based on structural similarity. IEEE Trans Geosci Remote Sens, 55(5):2941-2958. ![]() [37]Yu XZ, Chen KJ, Wang YF, et al., 2020. Robust adaptive steganography based on generalized dither modulation and expanded embedding domain. Signal Process, 168:107343. ![]() [38]Zhang CN, Benz P, Karjauv A, et al., 2020. UDH: universal deep hiding for steganography, watermarking, and light field messaging. Proc 34th Conf on Neural Information Processing Systems, p.10223-10234. ![]() [39]Zhang KA, Cuesta-Infante A, Xu L, et al., 2019. SteganoGAN: high capacity image steganography with GANs. ![]() [40]Zhang Y, Luo XY, Yang CF, et al., 2015. A JPEG-compression resistant adaptive steganography based on relative relationship between DCT coefficients. Proc 10th Int Conf on Availability, Reliability and Security, p.461-466. ![]() [41]Zhang Y, Luo XY, Wang JW, et al., 2021. Image robust adaptive steganography adapted to lossy channels in open social networks. Inform Sci, 564:306-326. ![]() [42]Zhao ZZ, Guan QX, Zhang H, et al., 2019. Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Trans Inform Foren Secur, 14(7):1843-1856. ![]() [43]Zhu JR, Kaplan R, Johnson J, et al., 2018. HiDDeN: hiding data with deep networks. Proc 15th European Conf on Computer Vision, p.682-697. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>