CLC number: TP391.4
On-line Access: 2025-04-03
Received: 2023-12-29
Revision Accepted: 2024-04-16
Crosschecked: 2025-04-07
Cited: 0
Clicked: 1490
Citations: Bibtex RefMan EndNote GB/T7714
Zhichao WANG, Xinhai CHEN, Junjun YAN, Jie LIU. An intelligent mesh-smoothing method with graph neural networks[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300878 @article{title="An intelligent mesh-smoothing method with graph neural networks", %0 Journal Article TY - JOUR
基于图神经网络的网格平滑方法研究1国防科技大学并行与分布计算全国重点实验室,中国长沙市,410073 2国防科技大学高端装备数字化软件重点实验室,中国长沙市,410073 摘要:在计算流体力学中,网格平滑方法通常被应用于优化网格质量,以实现高精度的数值模拟。其中,基于优化的平滑方法广泛用于高质量网格平滑,但其计算成本相对较高。一些先驱性研究工作尝试采用监督学习的方法,从高质量网格样本中学习平滑方法,以提高其平滑效率。然而,该方法存在一些限制,例如难以处理不同度节点的问题,并且需要数据增强来解决网格节点输入顺序的问题。此外,对于高质量网格数据的依赖也限制了该方法的适用性。为解决这些问题,本文提出一种轻量级神经网络模型GMSNet,以实现智能化的网格平滑。GMSNet采用图神经网络来提取节点邻居的特征,并输出最优的节点位置。在平滑过程中,本文还引入了一种容错机制,以防止GMSNet生成负体积元素。通过轻量级的模型架构,GMSNet能够有效地平滑不同度的网格节点,并且不受输入数据顺序的影响。此外,本文还提出一种新颖的损失函数MetricLoss,用于消除对高质量网格数据的依赖,并促进训练的稳定、快速收敛。本文在二维非结构网格上将GMSNet与常用的网格平滑方法进行对比。实验结果表明,相较于之前的模型,GMSNet在具有出色的网格平滑性能的同时,仅需要其5%的参数,并且平滑速度是基于优化的方法的13.56倍。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Baker TJ, 2005. Mesh generation: art or science? Prog Aerosp Sci, 41(1):29-63. ![]() [2]Bohn J, Feischl M, 2021. Recurrent neural networks as optimal mesh refinement strategies. Comput Math Appl, 97:61-76. ![]() [3]Bridgeman J, Jefferson B, Parsons SA, 2010. The development and application of CFD models for water treatment flocculators. Adv Eng Softw, 41(1):99-109. ![]() [4]Cai TL, Luo SJ, Xu KYL, et al., 2021. GraphNorm: a principled approach to accelerating graph neural network training. Proc 38 th Int Conf on Machine Learning, p.1204-1215. ![]() [5]Canann SA, Tristano JR, Staten ML, 1998. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. Proc 7 th Int Meshing Roundtable, p.479-494. ![]() [6]Chen L, 2004. Mesh smoothing schemes based on optimal Delaunay triangulations. Proc IMR, p.109-120. ![]() [7]Chen XH, Liu J, Pang YF, et al., 2020. Developing a new mesh quality evaluation method based on convolutional neural network. Eng Appl Comput Fluid Mech, 14(1):391-400. ![]() [8]Chen XH, Liu J, Gong CY, et al., 2021. MVE-Net: an automatic 3-D structured mesh validity evaluation framework using deep neural networks. Comput Aided Des, 141:103104. ![]() [9]Chen XH, Li TJ, Wan Q, et al., 2022. MGNet: a novel differential mesh generation method based on unsupervised neural networks. Eng Comput, 38(5):4409-4421. ![]() [10]Chowdhary KR, 2020. Natural language processing. In: Chowdhary KR (Ed.), Fundamentals of Artificial Intelligence. Springer, New Delhi, India, p.603-649. ![]() [11]Damjanović D, Kozak D, Živić M, et al., 2011. CFD analysis of concept car in order to improve aerodynamics. A Jövő Járműve, 1(2):67-70. ![]() [12]Daroya R, Atienza R, Cajote R, 2020. REIN: flexible mesh generation from point clouds. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops, p.1444-1453. ![]() [13]Du Q, Gunzburger M, 2002. Grid generation and optimization based on centroidal Voronoi tessellations. Appl Math Comput, 133(2-3):591-607. ![]() [14]Du Q, Wang DS, 2003. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int J Numer Methods Eng, 56(9):1355-1373. ![]() [15]Du Q, Faber V, Gunzburger M, 1999. Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev, 41(4):637-676. ![]() [16]Durand R, Pantoja-Rosero BG, Oliveira V, 2019. A general mesh smoothing method for finite elements. Finite Elem Anal Des, 158:17-30. ![]() [17]Escobar JM, Montenegro R, Montero G, et al., 2005. Smoothing and local refinement techniques for improving tetrahedral mesh quality. Comput Struct, 83(28-30):2423-2430. ![]() [18]Fidkowski KJ, Chen GD, 2021. Metric-based, goal-oriented mesh adaptation using machine learning. J Comput Phys, 426:109957. ![]() [19]Field DA, 1988. Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods, 4(6):709-712. ![]() [20]Freitag LA, Knupp PM, 2002. Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Methods Eng, 53(6):1377-1391. ![]() [21]Freitag LA, Ollivier-Gooch C, 1997. Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng, 40(21):3979-4002. https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9 ![]() [22]Guo YF, Hai YQ, 2021. Adaptive surface mesh remeshing based on a sphere packing method and a node insertion/deletion method. Appl Math Model, 98:1-13. ![]() [23]Guo YF, Wang L, Zhao K, et al., 2020. An angle-based smoothing method for triangular and tetrahedral meshes. Proc 15th Chinese Conf on Image and Graphics Technologies and Applications, p.224-234. ![]() [24]Guo YF, Wang CR, Ma Z, et al., 2022. A new mesh smoothing method based on a neural network. Comput Mech, 69(2):425-438. ![]() [25]Hai YQ, Guo YF, Cheng SY, et al., 2021. Regular position-oriented method for mesh smoothing. Acta Mech Soli Sin, 34(3):437-448. ![]() [26]Han X, Gao H, Pffaf T, et al., 2022. Predicting physics in mesh-reduced space with temporal attention. Proc Int Conf on Learning Representations. ![]() [27]Herrmann LR, 1976. Laplacian-isoparametric grid generation scheme. J Eng Mech Div, 102(5):749-756. ![]() [28]Kingma DP, Ba J, 2015. Adam: a method for stochastic optimization. Proc 3rd Int Conf on Learning Representations. ![]() [29]Kipf TN, Welling M, 2016. Semi-supervised classification with graph convolutional networks. ![]() [30]Klingner BM, Shewchuk JR, 2008. Aggressive tetrahedral mesh improvement. In: Brewer ML, Marcum D (Eds.), Proc 16th International Meshing Roundtable. Springer, Berlin, Germany, p.3-23. ![]() [31]Knupp PM, 2001. Algebraic mesh quality metrics. SIAM J Sci Comput, 23(1):193-218. ![]() [32]LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436-444. ![]() [33]Lee DT, Schachter BJ, 1980. Two algorithms for constructing a Delaunay triangulation. Int J Comput Inform Sci, 9(3):219-242. ![]() [34]Li GH, Müller M, Thabet A, et al., 2019. DeepGCNs: can GCNs go as deep as CNNs? Proc IEEE/CVF Int Conf on Computer Vision, p.9266-9275. ![]() [35]Liaw R, Liang E, Nishihara R, et al., 2018. Tune: a research platform for distributed model selection and training. ![]() [36]Lino M, Cantwell C, Bharath AA, et al., 2021. Simulating continuum mechanics with multi-scale graph neural networks. ![]() [37]Liu Y, Wang WP, Lévy B, et al., 2009. On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Trans Graph, 28(4):101. ![]() [38]Lloyd S, 1982. Least squares quantization in PCM. IEEE Trans Inform Theory, 28(2):129-137. ![]() [39]Lopes NP, 2023. Torchy: a tracing JIT compiler for PyTorch. Proc 32nd ACM SIGPLAN Int Conf on Compiler Construction, p.98-109. ![]() [40]Moukalled F, Mangani L, Darwish M, 2016. The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM® and Matlab. Springer, Cham, Germany, p.110-128. ![]() [41]Pak M, Kim S, 2017. A review of deep learning in image recognition. Proc 4th Int Conf on Computer Applications and Information Processing Technology, p.1-3. ![]() [42]Pan W, Lu XQ, Gong YH, et al., 2020. HLO: half-kernel Laplacian operator for surface smoothing. Comput Aided Des, 121:102807. ![]() [43]Papagiannopoulos A, Clausen P, Avellan F, 2021. How to teach neural networks to mesh: application on 2-D simplicial contours. Neur Netw, 136:152-179. ![]() [44]Parthasarathy VN, Kodiyalam S, 1991. A constrained optimization approach to finite element mesh smoothing. Finite Elem Anal Des, 9(4):309-320. ![]() [45]Paszyński M, Grzeszczuk R, Pardo D, et al., 2021. Deep learning driven self-adaptive hp finite element method. Proc 21st Int Conf on Computational Science, p.114-121. ![]() [46]Peng WH, Yuan ZL, Wang JC, 2022. Attention-enhanced neural network models for turbulence simulation. Phys Fluids, 34(2):025111. ![]() [47]Pfaff T, Fortunato M, Sanchez-Gonzalez A, et al., 2021. Learning mesh-based simulation with graph networks. ![]() [48]Prasad T, 2018. A Comparative Study of Mesh Smoothing Methods with Flipping in 2D and 3D. MS Thesis, The State University of New Jersey, New Jersey, USA. ![]() [49]Reddy DR, 1976. Speech recognition by machine: a review. Proc IEEE, 64(4):501-531. ![]() [50]Samstag RW, Ducoste JJ, Griborio A, et al., 2016. CFD for wastewater treatment: an overview. Water Sci Technol, 74(3):549-563. ![]() [51]Sharp N, Crane K, 2020. A Laplacian for nonmanifold triangle meshes. Comput Graph Forum, 39(5):69-80. ![]() [52]Song WB, Zhang MR, Wallwork JG, et al., 2022. M2N: mesh movement networks for PDE solvers. Proc 36th Conf on Neur Information Processing Systems, p.7199-7210. ![]() [53]Spalart PR, Venkatakrishnan V, 2016. On the role and challenges of CFD in the aerospace industry. Aeronaut J, 120(1223):209-232. ![]() [54]Ulyanov D, Vedaldi A, Lempitsky V, 2017. Instance normalization: the missing ingredient for fast stylization. ![]() [55]Vartziotis D, Papadrakakis M, 2017. Improved GETMe by adaptive mesh smoothing. Comput Assisted Methods Eng Sci, 20(1):55-71 ![]() [56]Vartziotis D, Wipper J, 2019. The GETMe Mesh Smoothing Framework: a Geometric Way to Quality Finite Element Meshes. Taylor & Francis Group, Boca Raton, USA. ![]() [57]Vartziotis D, Athanasiadis T, Goudas I, et al., 2008. Mesh smoothing using the geometric element transformation method. Comput Methods Appl Mech Eng, 197(45-48):3760-3767. ![]() [58]Vollmer J, Mencl R, Müller H, 1999. Improved Laplacian smoothing of noisy surface meshes. Comput Graph Forum, 18(3):131-138. ![]() [59]Wallwork JG, Lu JY, Zhang MR, et al., 2022. E2N: error estimation networks for goal-oriented mesh adaptation. ![]() [60]Wang ZH, Chen XH, Li TJ, et al., 2022. Evaluating mesh quality with graph neural networks. Eng Comput, 38(5):4663-4673. ![]() [61]Wu TF, Liu XJ, An W, et al., 2022. A mesh optimization method using machine learning technique and variational mesh adaptation. Chin J Aeronaut, 35(3):27-41. ![]() [62]Wu ZH, Pan SR, Chen FW, et al., 2021. A comprehensive survey on graph neural networks. IEEE Trans Neur Netw Learn Syst, 32(1):4-24. ![]() [63]Xu KJ, Gao XF, Chen GN, 2017. Hexahedral mesh quality improvement via edge-angle optimization. Comput Graphics, 70:17-27. ![]() [64]Zhang YJ, Bajaj C, Xu GL, 2009. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Commun Numer Methods Eng, 25(1):1-18. ![]() [65]Zhang ZY, Wang YX, Jimack PK, et al., 2020. MeshingNet: a new mesh generation method based on deep learning. Proc 20th Int Conf on Computational Science, p.186-198. ![]() [66]Zhang ZY, Jimack PK, Wang H, 2021. MeshingNet3D: efficient generation of adapted tetrahedral meshes for computational mechanics. Adv Eng Softw, 157-158:103021. ![]() [67]Zhou T, Shimada K, 2000. An angle-based approach to two-dimensional mesh smoothing. Proc IMR, p.373-384. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>