CLC number: TP391
On-line Access: 2025-02-10
Received: 2024-05-07
Revision Accepted: 2024-06-24
Crosschecked: 2025-02-18
Cited: 0
Clicked: 658
Citations: Bibtex RefMan EndNote GB/T7714
Shuai REN, Hao GONG, Suya ZHENG. Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400360 @article{title="Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement", %0 Journal Article TY - JOUR
基于复合算子特征增强的三维点云隐写分析算法1长安大学信息工程学院,中国西安市,710064 2长安大学地质工程与测绘学院,中国西安市,710064 摘要:三维点云信息隐藏算法主要集中在空间域。现有的空间域隐写分析算法在分析检测过程中受干扰因素较多,且仅能应用于三维网格对象,缺少针对三维点云对象的隐写分析算法。为打破隐写分析仅限于三维网格的局限,消除三维网格隐写分析特征集中的冗余特征,提出基于复合算子特征增强的三维点云隐写分析算法。首先,对三维点云进行归一化以及平滑处理。其次,通过改进的3DHarris-ISS复合算子提取三维点云中可能含密的特征点以及其邻域点作为特征增强区域,并在特征增强区域进行特征增强,形成特征增强的三维点云,在突出特征点的同时抑制其余顶点带来的干扰。再次,筛选已有的三维网格特征集合,减少更多相关特征的数据冗余,并将新提取的局部邻域特征集添加到筛选的特征集,从而形成三维点云隐写分析特征集POINT72。最后,利用POINT72特征集对增强后的三维点云进行隐写特征提取,并进行隐写分析实验。实验分析表明,算法可以准确分析三维点云的空域隐写,并判断三维点云是否含有隐藏信息。在缺少边信息和面信息的前提下,三维点云隐写分析的准确率接近现有三维网格隐写分析算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Chen YC, Fan YG, Yu DF, et al., 2023. Adaptive bilateral filtering point cloud smoothing and IMLS evaluation method considering normal outliers. J Graph, 44(1):131-138 (in Chinese). ![]() [2]Decker TG, Devillers RW, Gallier S, 2023. Detecting agglomeration patterns on solid propellant surface via a new curvature-based multiscale method. Acta Astronaut, 206:123-132. ![]() [3]Li ZY, Bors AG, 2016. 3D mesh steganalysis using local shape features. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2144-2148. ![]() [4]Li ZY, Bors AG, 2017. Steganalysis of 3D objects using statistics of local feature sets. Inform Sci, 415-416:85-99. ![]() [5]Li ZY, Bors AG, 2020a. Selection of robust and relevant features for 3-D steganalysis. IEEE Trans Cybern, 50(5):1989-2001. ![]() [6]Li ZY, Bors AG, 2020b. Steganalysis of meshes based on 3D wavelet multiresolution analysis. Inform Sci, 522:164-179. ![]() [7]Li ZY, Gong DF, Liu FL, et al., 2018a. 3D steganalysis using the extended local feature set. Proc 25th IEEE Int Conf on Image Processing, p.1683-1687. ![]() [8]Li ZY, Liu FL, Bors AG, 2018b. 3D steganalysis using Laplacian smoothing at various levels. Proc 4th Int Conf on Cloud Computing and Security, p.223-232. ![]() [9]Liu SJ, Luo FF, Li QS, et al., 2024. AWEDD: a descriptor simultaneously encoding multiscale extrinsic and intrinsic shape features. Vis Comput, 40:2537-2554. ![]() [10]Lowe DG, 2004. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 60(2):91-110. ![]() [11]Mikolajczyk K, Tuytelaars T, Schmid C, et al., 2005. A comparison of affine region detectors. Int J Comput Vis, 65(1-2):43-72. ![]() [12]Nie JH, Zhang ZC, Liu Y, et al., 2019. Point cloud ridge-valley feature enhancement based on position and normal guidance. ![]() [13]Pauly M, Keiser R, Gross M, 2003. Multi-scale feature extraction on point-sampled surfaces. Comput Graph Forum, 22(3):281-289. ![]() [14]Yang Y, Ivrissimtzis I, 2014. Mesh discriminative features for 3D steganalysis. ACM Trans Mult Comput Commun Appl, 10(3):27. ![]() [15]Zhong Y, 2009. Intrinsic shape signatures: a shape descriptor for 3D object recognition. Proc IEEE 12th Int Conf on Computer Vision Workshops, p.689-696. ![]() [16]Zhou H, Chen KJ, Zhang WM, et al., 2021. Feature-preserving tensor voting model for mesh steganalysis. IEEE Trans Vis Comput Graph, 27(1):57-67. ![]() [17]Zhou H, Chen KJ, Zhang WM, et al., 2022. 3D mesh steganography and steganalysis: review and prospect. J Image Graph, 27(1):150-162 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>