CLC number: TN96
On-line Access: 2025-07-02
Received: 2024-05-07
Revision Accepted: 2025-07-02
Crosschecked: 2025-01-19
Cited: 0
Clicked: 479
Yuting YANG, Tao ZHANG, Wu HUANGz. A dynamic K-nearest neighbor method based on strong access point credibility for indoor positioning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400366 @article{title="A dynamic K-nearest neighbor method based on strong access point credibility for indoor positioning", %0 Journal Article TY - JOUR
基于强接入点可信度的动态K近邻室内定位方法1成都泰盟软件有限公司研究院,中国成都市,610100 2四川大学计算机学院,中国成都市,610044 摘要:高精度室内定位为病患监护、设备调度管理、实验室安全等服务提供了宝贵信息支撑。传统室内定位技术--指纹室内定位--通常采用K近邻(KNN)算法,通过接收信号强度(RSS)确定最近的K个参考点进行位置预测。然而,RSS易受环境干扰,导致选择的参考点并非用户物理空间上的最近邻。此外,使用固定的K值并非最佳策略。本文提出一种基于强接入点可信度的动态K近邻法室内定位方法(SAPC-DKNN)。该方法利用RSS路径损耗先验知识,通过RSS波动范围量化不同接入点的重要性。整合强接入点范围内接入点集的相似性,并根据强接入点的可信度为RSS制定加权距离度量。此外,引入基于邻域密度的动态K值算法(ND-DKA),自动优化每个测试点的K值。在3个数据集上的实验表明,与最先进KNN方法相比,该方法平均定位误差显著降低15.41%~64.74%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alitaleshi A, Jazayeriy H, Kazemitabar J, 2023. EA-CNN: a smart indoor 3D positioning scheme based on WiFi fingerprinting and deep learning. Eng Appl Artif Intell, 117: 105509. ![]() [2]Arslantas H, Okdem S, 2024. Indoor localization with an autoencoder-based convolutional neural network. IEEE Access, (12):46059-46066. ![]() [3]Ayinla SL, Aziz AA, Drieberg M, 2024. SALLoc: an accurate target localization in WiFi-enabled indoor environments via SAE-ALSTM. IEEE Access, 12:19694-19710. ![]() [4]Bahl P, Padmanabhan VN, 2000. RADAR: an in-building RF-based user location and tracking system. Proc IEEE INFOCOM Conf on Computer Communications and 19th Annual Joint Conf of the IEEE Computer and Communications Societies, p.775-784. ![]() [5]Bi JX, Wang YJ, Yu BG, et al., 2022. Supplementary open dataset for WiFi indoor localization based on received signal strength. Satell Navig, 3(1):25. ![]() [6]Brunato M, Battiti R, 2005. Statistical learning theory for location fingerprinting in wireless LANs. Comput Netw, 47(6):825-845. ![]() [7]Cha J, Lim E, 2022. A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on WiFi fingerprinting. Appl Soft Comput, 120: 108624. ![]() [8]Chen GK, Guo XY, Liu K, et al., 2022. RWKNN: a modified WKNN algorithm specific for the indoor localization problem. IEEE Sens J, 22(7):7258-7266. ![]() [9]Chon HD, Jun S, Jung H, et al., 2004. Using RFID for accurate positioning. J Glob Posit Syst, 3(1):32-39. ![]() [10]Ciurana M, Cugno S, Barcelo-Arroyo F, 2007. WLAN indoor positioning based on TOA with two reference points. Proc 4th Workshop on Positioning, Navigation and Communication, p.23-28. ![]() [11]Costa JA, Patwari N, Hero AOIII, 2006. Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Trans Sens Netw, 2(1):39-64. ![]() [12]Dag T, Arsan T, 2018. Received signal strength based least squares lateration algorithm for indoor localization. Comput Electr Eng, 66:114-126. ![]() [13]Dong YH, Arslan T, Yang YJ, 2022. An encoded LSTM network model for WiFi-based indoor positioning. Proc IEEE 12th Int Conf on Indoor Positioning and Indoor Navigation, p.1-6. ![]() [14]Dong ZY, Xu WM, Zhuang H, 2019. Research on ZigBee indoor technology positioning based on RSSI. Proc Comput Sci, 154:424-429. ![]() [15]Gu YY, Lo A, Niemegeers I, 2009. A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surv Tut, 11(1):13-32. ![]() [16]He SN, Chan SHG, 2016. WiFi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun Surv Tut, 18(1):466-490. ![]() [17]Hegarty CJ, Chatre E, 2008. Evolution of the Global Navigation Satellite System (GNSS). Proc IEEE, 96(12):1902-1917. ![]() [18]Hoang MT, Zhu YZ, Yuen B, et al., 2018. A soft range limited K-nearest neighbor algorithm for indoor localization enhancement. IEEE Sens J, 18(24):10208-10216. ![]() [19]Hu JS, Liu HL, Liu DW, 2018. Toward a dynamic K in K-nearest neighbor fingerprint indoor positioning. Proc IEEE Int Conf on Information Reuse and Integration, p.308-314. ![]() [20]Hu JS, Liu Dw, Yan Z, et al., 2019. Experimental analysis on weight K-nearest neighbor indoor fingerprint positioning. IEEE Int Things J, 6(1):891-897. ![]() [21]Hu XK, Shang JG, Gu FQ, et al., 2015. Improving WiFi indoor positioning via AP sets similarity and semi-supervised affinity propagation clustering. Int J Distrib Sens Netw, 11: 109642. ![]() [22]Jin RC, Xu H, Che ZP, et al., 2015. Experimental evaluation of reducing ranging-error based on receive signal strength indication in wireless sensor networks. IET Wirel Sens Syst, 5(5):228-234. ![]() [23]Latif E, Parasuraman R, 2022. Online indoor localization using DOA of wireless signals. https://arxiv.org/abs/2201.05105 ![]() [24]Le YF, Zhang HN, Shi WB, et al., 2021. Received signal strength based indoor positioning algorithm using advanced clustering and kernel ridge regression. Front Inform Technol Electron Eng, 22(6):827-838. ![]() [25]Lee I, Kwak M, Han D, 2016. A dynamic K-nearest neighbor method for WLAN-based positioning systems. J Comput Inform Syst, 56(4):295-300. ![]() [26]Li D, Zhang BX, Li C, 2015. A feature-scaling-based K-nearest neighbor algorithm for indoor positioning systems. IEEE Int Things J, 3(4):590-597. ![]() [27]Lin H, Purmehdi H, Fei XN, et al., 2023. Two-stage clustering for improve indoor positioning accuracy. Autom Constr, 154: 104981. ![]() [28]Liu H, Darabi H, Banerjee P, et al., 2007. Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C (Appl Rev), 37(6):1067-1080. ![]() [29]Liu S, Jiang YX, Striegel A, 2014. Face-to-face proximity estimation using Bluetooth on smartphones. IEEE Trans Mob Comput, 13(4):811-823. ![]() [30]Liu SY, de Lacerda R, Fiorina J, 2022. Performance analysis of adaptive K for weighted K-nearest neighbor based indoor positioning. Proc IEEE 95th Vehicular Technology Conf, p.1-5. ![]() [31]Lohan ES, Torres-Sospedra J, Richter P, et al., 2017. Crowdsourced WiFi database and benchmark software for indoor positioning. Zenodo Repository. ![]() [32]Ma J, Li XS, Tao XP, et al., 2008. Cluster filtered KNN: a WLAN-based indoor positioning scheme. Proc Int Symp on a World of Wireless, Mobile and Multimedia Networks, p.1-8. ![]() [33]Ma R, Guo Q, Hu CZ, et al., 2015. An improved WiFi indoor positioning algorithm by weighted fusion. Sensors, 15(9):21824-21843. ![]() [34]Madigan D, Einahrawy E, Martin RP, et al., 2005. Bayesian indoor positioning systems. Proc IEEE 24th Annual Joint Conf of the IEEE Computer and Communications Societies, p.1217-1227. ![]() [35]Nabati M, Ghorashi SA, 2023. A real-time fingerprint-based indoor positioning using deep learning and preceding states. Expert Syst Appl, 213: 118889. ![]() [36]Nguyen SM, Le DV, Havinga PJM, 2023. Learning the world from its words: anchor-agnostic Transformers for fingerprint-based indoor localization. Proc IEEE Int Conf on Pervasive Computing and Communications, p.150-159. ![]() [37]Nguyen SM, Le DV, Havinga PJM, 2024. Seeing the world from its words: all-embracing Transformers for fingerprint-based indoor localization. Perv Mob Comput, 100: 101912. ![]() [38]Ni LM, Liu YH, Lau YC, et al., 2003. LANDMARC: indoor location sensing using active RFID. Proc 1st IEEE Int Conf on Pervasive Computing and Communication, p.407-415. ![]() [39]Oh J, Kim J, 2018. Adaptive K-nearest neighbour algorithm for WiFi fingerprint positioning. ICT Expr, 4(2):91-94. ![]() [40]Peng YR, Fan WT, Dong X, et al., 2016. An iterative weighted KNN (IW-KNN) based indoor localization method in Bluetooth low energy (BLE) environment. Proc Int IEEE Conf on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress, p.794-800. ![]() [41]Pu YC, You PC, 2018. Indoor positioning system based on BLE location fingerprinting with classification approach. Appl Math Modell, 62:654-663. ![]() [42]Ren QQ, Wang Y, Liu SN, et al., 2023. FSTNet: learning spatial–temporal correlations from fingerprints for indoor positioning. Ad Hoc Netw, 149: 103244. ![]() [43]Rusli ME, Ali M, Jamil N, et al., 2016. An improved indoor positioning algorithm based on RSSI-trilateration technique for Internet of Things (IoT). Proc Int Conf on Computer and Communication Engineering, p.72-77. ![]() [44]Sadowski S, Spachos P, Plataniotis KN, 2020. Memoryless techniques and wireless technologies for indoor localization with the Internet of Things. IEEE Int Things J, 7(11):10996-11005. ![]() [45]Salamah AH, Tamazin M, Sharkas MA, et al., 2016. An enhanced WiFi indoor localization system based on machine learning. Proc Int Conf on Indoor Positioning and Indoor Navigation, p.1-8. ![]() [46]Song XD, Fan XC, Xiang CC, et al., 2019. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access, 7:110698-110709. ![]() [47]Torres-Sospedra J, Montoliu R, Martónez-Usó A, et al., 2014. UJIIndoorLoc: a new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. Proc Int Conf on Indoor Positioning and Indoor Navigation, p.261-270. ![]() [48]Torres-Sospedra J, Montoliu R, Trilles S, et al., 2015. Comprehensive analysis of distance and similarity measures for WiFi fingerprinting indoor positioning systems. Expert Syst Appl, 42(23):9263-9278. ![]() [49]Torres-Sospedra J, Montoliu R, Mendoza-Silva GM, et al., 2016. Providing databases for different indoor positioning technologies: pros and cons of magnetic field and WiFi based positioning. Mob Inform Syst, 2016(1): 6092618. ![]() [50]Umair MY, Ramana KV, Yang DK, 2014. An enhanced K-nearest neighbor algorithm for indoor positioning systems in a WLAN. Proc IEEE Computers, Communications and IT Applications Conf, p.19-23. ![]() [51]Wu D, Xu YB, Ma L, 2009. Research on RSS based indoor location method. Proc Pacific-Asia Conf on Knowledge Engineering and Software Engineering, p.205-208. ![]() [52]Xia MZ, Chen JB, Song CL, et al., 2015. The indoor positioning algorithm research based on improved location fingerprinting. Proc 27th Chinese Control and Decision Conf, p.5736-5739. ![]() [53]Xie YQ, Wang Y, Nallanathan A, et al., 2016. An improved K-nearest-neighbor indoor localization method based on Spearman distance. IEEE Signal Process Lett, 23(3):351-355. ![]() [54]Yang CC, Shao HR, 2015. WiFi-based indoor positioning. IEEE Commun Mag, 53(3):150-157. ![]() [55]Yu XJ, Li QQ, Queralta JP, et al., 2021. Applications of UWB networks and positioning to autonomous robots and industrial systems. Proc 10th Mediterranean Conf on Embedded Computing, p.1-6. ![]() [56]Zhang H, Wang ZK, Xia WC, et al., 2022. Weighted adaptive KNN algorithm with historical information fusion for fingerprint positioning. IEEE Wirel Commun Lett, 11(5):1002-1006. ![]() [57]Zhang J, Mao HQ, 2022. WKNN indoor positioning method based on spatial feature partition and basketball motion capture. Alexandr Eng J, 61(1):125-134. ![]() [58]Zhao YM, Gong W, Li L, et al., 2024. An efficient and robust fingerprint based localization method for multifloor indoor environment. IEEE Int Things J, 11(3):3927-3941. ![]() [59]Zou H, Jin M, Jiang H, et al., 2017. WinIPS: WiFi-based non-intrusive indoor positioning system with online radio map construction and adaptation. IEEE Trans Wirel Commun, 16(12):8118-8130. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>