CLC number: TN929
On-line Access: 2025-05-06
Received: 2024-05-31
Revision Accepted: 2024-12-01
Crosschecked: 2025-05-06
Cited: 0
Clicked: 655
Xuebin LAI, Yan GUO, Ming HE, Hao YUAN, Wei LI, Xiaonan CUI. A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400465 @article{title="A UAV-enabled mobile edge computing paradigm for dependent tasks based on a computing power pool", %0 Journal Article TY - JOUR
基于算力池的依赖型任务无人机移动边缘计算范式1中国人民解放军陆军工程大学通信工程学院,中国南京市,210007 2中国人民解放军陆军工程大学指挥与控制工程学院,中国南京市,210007 摘要:随着5G和6G通信技术不断演进与发展,物联网设备显著增长,人工智能应用日益广泛,这一趋势给目前的算力网络提出前所未有的挑战。无人机移动边缘计算(U-MEC)被认为是一种有效的应对范式。尽管如此,无人机资源供给与计算需求之间的矛盾成为亟待解决的难题。近期,针对具有依赖性的计算任务,研究人员提出一系列资源管理方法。然而,这些方法往往忽略了任务之间的重复性。针对这一问题,我们提出一种基于算力池的无人机移动边缘计算方法,允许无人机共享信息和计算资源。为确保算力池的有效构建,提出一个通过联合优化卸载策略、任务调度和资源分配来平衡无人机能耗的问题。为解决这一NP难问题,设计了一种基于连续凸近似和改进遗传算法的两阶段交替优化算法。仿真结果表明,所提方法平均减少了无人机18.41%的时间和21.68%的能耗,显著提高了任务完成效率。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abrar M, Ajmal U, Almohaimeed ZM, et al., 2021. Energy efficient UAV-enabled mobile edge computing for IoT devices: a review. IEEE Access, 9:127779-127798. ![]() [2]Ahmed M, Seraj R, Islam SMS, 2020. The k-means algorithm: a comprehensive survey and performance evaluation. Electronics, 9(8):1295. ![]() [3]Alliance of Industrial Internet (AII), 2023. Edge Native Technical White Paper 2.0. Technical Report (in Chinese). ![]() [4]Bahmani B, Moseley B, Vattani A, et al., 2012. Scalable K-means++. Proc VLDB Endowm, 5(7):622-633. ![]() [5]Bai ZY, Lin YF, Cao Y, et al., 2022. Delay-aware cooperative task offloading for multi-UAV enabled edge-cloud computing. IEEE Trans Mob Comput, 23(2):1034-1049. ![]() [6]China Center for Information Industry Development (CCID), 2020. 6G Concept and Vision White Paper. Technical Report, p.1-32(in Chinese). ![]() [7]Dai MH, Huang N, Wu Y, et al., 2023. Latency minimization oriented hybrid offshore and aerial-based multi-access computation offloading for marine communication networks. IEEE Trans Commun, 71(11):6482-6498. ![]() [8]Fu S, Guo XH, Fang F, et al., 2023. Towards energy-efficient data collection by unmanned aerial vehicle base station with NOMA for emergency communications in IoT. IEEE Trans Veh Technol, 72(1):1211-1223. ![]() [9]Guo HZ, Wang YT, Liu JJ, et al., 2024. Multi-UAV cooperative task offloading and resource allocation in 5G advanced and beyond. IEEE Trans Wirel Commun, 23(1):347-359. ![]() [10]Hämäläinen J, Kärkkäinen T, Rossi T, 2020. Improving scalable K-means++. Algorithms, 14(1):6. ![]() [11]He YJ, Gan YH, Cui HX, et al., 2023. Fairness-based 3D multi-UAV trajectory optimization in multi-UAV-assisted MEC system. IEEE Int Things J, 10(13):11383-11395. ![]() [12]Hu QY, Cai YL, Yu GD, et al., 2019. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems. IEEE Int Things J, 6(2):1879-1892. ![]() [13]Hu XY, Wong KK, Zhang YY, 2020. Wireless-powered edge computing with cooperative UAV: task, time scheduling, and trajectory design. IEEE Trans Wirel Commun, 19(12):8083-8098. ![]() [14]Hu ZZ, Zeng FZ, Xiao Z, et al., 2021. Computation efficiency maximization and QoE-provisioning in UAV-enabled MEC communication systems. IEEE Trans Netw Sci Eng, 8(2):1630-1645. ![]() [15]Huang XM, Peng CD, Wu Y, et al., 2023. Joint interdependent task scheduling and energy balancing for multi-UAV-enabled aerial edge computing: a multiobjective optimization approach. IEEE Int Things J, 10(23):20368-20382. ![]() [16]Jang Y, Jeong S, Kang J, 2024. Energy-efficient vehicular edge computing with one-by-one access scheme. IEEE Wirel Commun Lett, 13(1):39-43. ![]() [17]Jia RN, Zhao K, Wei XL, et al., 2023. Joint trajectory planning, service function deploying, and DAG task scheduling in UAV-empowered edge computing. Drones, 7(7):443. ![]() [18]Kato N, Fadlullah ZM, Tang FX, et al., 2019. Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wirel Commun, 26(4):140-147. ![]() [19]Khalid R, Shah Z, Naeem M, et al., 2024. Computational efficiency maximization for UAV-assisted MEC networks with energy harvesting in disaster scenarios. IEEE Int Things J, 11(5):9004-9018. ![]() [20]Khuwaja AA, Chen YF, Zhao N, et al., 2018. A survey of channel modeling for UAV communications. IEEE Commun Surv Tutor, 20(4):2804-2821. ![]() [21]Kim D, Jeong S, Kang J, 2024. Energy-efficient secure offloading system designed via UAV-mounted intelligent reflecting surface for resilience enhancement. IEEE Int Things J, 11(3):3768-3778. ![]() [22]Li J, Pan Y, Xia YC, et al., 2024. Optimizing dag scheduling and deployment for IoT data analysis services in the multi-UAV mobile edge computing system. Wirel Netw, 30(7):6465-6479. ![]() [23]Lin H, Zeadally S, Chen ZH, et al., 2020. A survey on computation offloading modeling for edge computing. J Netw Comput Appl, 169:102781. ![]() [24]Liu CT, Guo Y, Li N, et al., 2022. AoI-minimal task assignment and trajectory optimization in multi-UAV-assisted IoT networks. IEEE Int Things J, 9(21):21777-21791. ![]() [25]Liu CT, Guo Y, Li N, et al., 2023. Satisfaction-driven cooperative trajectory optimisation for multi-UAV-assisted mobile edge computing. Int J Ad Hoc Ubiq Comput, 43(1):29-40. ![]() [26]Liu SM, Yu Y, Lian X, et al., 2023. Dependent task scheduling and offloading for minimizing deadline violation ratio in mobile edge computing networks. IEEE J Sel Areas Commun, 41(2):538-554. ![]() [27]Luan QJ, Cui HY, Zhang LF, et al., 2022. A hierarchical hybrid subtask scheduling algorithm in UAV-assisted MEC emergency network. IEEE Int Things J, 9(14):12737-12753. ![]() [28]Mei HB, Yang K, Liu Q, et al., 2020. Joint trajectory-resource optimization in UAV-enabled edge-cloud system with virtualized mobile clone. IEEE Int Things J, 7(7):5906-5921. ![]() [29]Michailidis ET, Maliatsos K, Skoutas DN, et al., 2022. Secure UAV-aided mobile edge computing for IoT: a review. IEEE Access, 10:86353-86383. ![]() [30]Nasir AA, 2021. Latency optimization of UAV-enabled MEC system for virtual reality applications under Rician fading channels. IEEE Wirel Commun Lett, 10(8):1633-1637. ![]() [31]Nguyen LX, Tun YK, Dang TN, et al., 2023. Dependency tasks offloading and communication resource allocation in collaborative UAV networks: a metaheuristic approach. IEEE Int Things J, 10(10):9062-9076. ![]() [32]Ning ZL, Hu H, Wang XJ, et al., 2023. Mobile edge computing and machine learning in the Internet of unmanned aerial vehicles: a survey. ACM Comput Surv, 56(1):13. ![]() [33]Pranoto H, Saputra PP, Sadekh M, et al., 2023. Augmented reality navigation application to promote tourism to local state attraction “Lawang Sewu.” Proc Comput Sci, 216:757-764. ![]() [34]Qin XT, Song ZY, Hou TW, et al., 2023. Joint optimization of resource allocation, phase shift, and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems. IEEE Trans Green Commun Netw, 7(4):1778-1792. ![]() [35]Qin Z, Wang H, Wei ZH, et al., 2021. Task selection and scheduling in UAV-enabled MEC for reconnaissance with time-varying priorities. IEEE Int Things J, 8(24):17290-17307. ![]() [36]Sahni Y, Cao JN, Yang L, et al., 2021. Multihop offloading of multiple DAG tasks in collaborative edge computing. IEEE Int Things J, 8(6):4893-4905. ![]() [37]Samir M, Sharafeddine S, Assi CM, et al., 2020. UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Trans Wirel Commun, 19(1):34-46. ![]() [38]Scutari G, Facchinei F, Lampariello L, 2017. Parallel and distributed methods for constrained nonconvex optimization—part I: theory. IEEE Trans Signal Process, 65(8):1929-1944. ![]() [39]Tian J, Wang D, Zhang HX, et al., 2023. Service satisfaction-oriented task offloading and UAV scheduling in UAV-enabled MEC networks. IEEE Trans Wirel Commun, 22(12):8949-8964. ![]() [40]Wang LJ, Zhou Q, Shen Y, 2023. Computation efficiency maximization for UAV-assisted relaying and MEC networks in urban environment. IEEE Trans Green Commun Netw, 7(2):565-578. ![]() [41]Wang ZQ, Rong HG, Jiang HB, et al., 2022. A load-balanced and energy-efficient navigation scheme for UAV-mounted mobile edge computing. IEEE Trans Netw Sci Eng, 9(5):3659-3674. ![]() [42]Wu GX, Miao YM, Zhang Y, et al., 2020. Energy efficient for UAV-enabled mobile edge computing networks: intelligent task prediction and offloading. Comput Commun, 150:556-562. ![]() [43]Xu B, Kuang ZF, Gao J, et al., 2023. Joint offloading decision and trajectory design for UAV-enabled edge computing with task dependency. IEEE Trans Wirel Commun, 22(8):5043-5055. ![]() [44]Yan J, Bi SZ, Zhang YJ, et al., 2020a. Optimal task offloading and resource allocation in mobile-edge computing with inter-user task dependency. IEEE Trans Wirel Commun, 19(1):235-250. ![]() [45]Yan J, Bi SZ, Zhang YJA, 2020b. Offloading and resource allocation with general task graph in mobile edge computing: a deep reinforcement learning approach. IEEE Trans Wirel Commun, 19(8):5404-5419. ![]() [46]Yang XM, Luo H, Sun Y, et al., 2021. Coalitional game-based cooperative computation offloading in MEC for reusable tasks. IEEE Int Things J, 8(16):12968-12982. ![]() [47]Yang ZY, Bi SZ, Zhang YJA, 2022. Online trajectory and resource optimization for stochastic UAV-enabled MEC systems. IEEE Trans Wirel Commun, 21(7):5629-5643. ![]() [48]Yuan WY, Chang DN, Han T, 2023. A context-aware smart product-service system development approach and application case. Comput Ind Eng, 183:109468. ![]() [49]Zhai ZY, Dai XH, Duo B, et al., 2022. Energy-efficient UAV-mounted RIS assisted mobile edge computing. IEEE Wirel Commun Lett, 11(12):2507-2511. ![]() [50]Zhang L, Chakareski J, 2022. UAV-assisted edge computing and streaming for wireless virtual reality: analysis, algorithm design, and performance guarantees. IEEE Trans Veh Technol, 71(3):3267-3275. ![]() [51]Zhang PY, Wang C, Jiang CX, et al., 2021. UAV-assisted multi-access edge computing: technologies and challenges. IEEE Int Things Mag, 4(4):12-17. ![]() [52]Zhang XC, Zhang J, Xiong J, et al., 2020. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA. IEEE Int Things J, 7(6):5613-5627. ![]() [53]Zhao TT, Li F, He LJ, 2024. Secure video offloading in multi-UAV-enabled MEC networks: a deep reinforcement learning approach. IEEE Int Things J, 11(2):2950-2963. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>