Full Text:  <1069>

CLC number: TP181

On-line Access: 2025-06-04

Received: 2024-06-07

Revision Accepted: 2024-10-04

Crosschecked: 2025-09-04

Cited: 0

Clicked: 757

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kailong MOU

https://orcid.org/0009-0002-1576-8357

Mengjian ZHANG

https://orcid.org/0000-0001-8546-9972

Deguang WANG

https://orcid.org/0000-0003-4936-8773

Ming YANG

https://orcid.org/0000-0002-4470-3467

Chengbin LIANG

https://orcid.org/0000-0002-6094-018X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers


Author(s):  Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG

Affiliation(s):  College of Electrical Engineering, Guizhou University, Guiyang 550025, China; more

Corresponding email(s):  gs.klmu23@gzu.edu.cn, 202111088258@mail.scut.edu.cn, dgwang@gzu.edu.cn, myang23@gzu.edu.cn

Key Words:  PID controllers; Parameter tuning; Hippopotamus optimization; Latin hypercube sampling; Adaptive lens reverse learning; Adaptive perturbation mechanism


Share this article to: More <<< Previous Paper|

Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG. Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400492

@article{title="Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers",
author="Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400492"
}

%0 Journal Article
%T Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers
%A Kailong MOU
%A Mengjian ZHANG
%A Deguang WANG
%A Ming YANG
%A Chengbin LIANG
%J Frontiers of Information Technology & Electronic Engineering
%P 1356-1377
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400492"

TY - JOUR
T1 - Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers
A1 - Kailong MOU
A1 - Mengjian ZHANG
A1 - Deguang WANG
A1 - Ming YANG
A1 - Chengbin LIANG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1356
EP - 1377
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400492"


Abstract: 
Effectively tuning the parameters of proportional–integral–derivative (PID) controllers has persistently posed a challenge in control engineering. This study proposes enhanced hippopotamus optimization (EHO) to address this challenge. Latin hypercube sampling and adaptive lens reverse learning are used to initialize the population to improve population diversity and enhance global search. Additionally, an adaptive perturbation mechanism is introduced into the position update in the exploration phase. To validate the performance of EHO, it is benchmarked against hippopotamus optimization and four classical or state-of-the-art intelligent algorithms using the CEC2022 test suite. The effectiveness of EHO is further evaluated by applying it in tuning PID controllers for different types of systems. The performance of EHO is compared with five other algorithms and the classical Ziegler–Nichols method. Analysis of convergence curves, step responses, box plots, and radar charts indicates that EHO outperforms the compared methods in accuracy, convergence speed, and stability. Finally, EHO is used to tune the cascade PID controller for trajectory tracking in a quadrotor unmanned aerial vehicle to assess its applicability. The simulation results indicate that the integrals of the time absolute error for the position channels (x, y, z), when the system is optimized using EHO over an 80 s runtime, are 59.979, 22.162, and 0.017, respectively. These values are notably lower than those obtained by the original hippopotamus optimization and manual parameter adjustment.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amiri MH, Mehrabi Hashjin N, Montazeri M, et al., 2024. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci Rep, 14(1):5032.

[2]Ang KH, Chong G, Li Y, 2005. PID control system analysis, design, and technology. IEEE Trans Contr Syst Technol, 13(4):559-576.

[3]Bujok P, Kolenovsky P, 2022. Eigen crossover in cooperative model of evolutionary algorithms applied to CEC 2022 single objective numerical optimisation. IEEE Congress on Evolutionary Computation, p.1-8.

[4]Carlucho I, De Paula M, Acosta GG, 2020. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots. ISA Trans, 102:280-294.

[5]Carvajal J, Chen GR, Ogmen H, 2000. Fuzzy PID controller: design, performance evaluation, and stability analysis. Inform Sci, 123(3-4):249-270.

[6]Chen SY, Lin FJ, 2013. Decentralized PID neural network control for five degree-of-freedom active magnetic bearing. Eng Appl Artif Intell, 26(3):962-973.

[7]Chen XY, Zhang MJ, Yang M, et al., 2024. A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems. Cluster Comput, 27(10):14685-14727.

[8]Chien KL, Hrones JA, Reswick JB, 1952. On the automatic control of generalized passive systems. J Fluids Eng, 74(2):175-183.

[9]Chopra N, Ansari MM, 2022. Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl, 198:116924.

[10]Cohen GH, Coon GA, 1953. Theoretical consideration of retarded control. J Fluids Eng, 75(5):827-834.

[11]Deng W, Chen R, He B, et al., 2012. A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Comput, 16(10):1707-1722.

[12]Deng W, Cai X, Wu DQ, et al., 2024. MOQEA/D: multi-objective QEA with decomposition mechanism and excellent global search and its application. IEEE Trans Intell Transp Syst, 25(9):12517-12527.

[13]El Khoukhi F, Boukachour J, El Hilali Alaoui A, 2017. The “dual-ants colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Comput Ind Eng, 106:236-255.

[14]Feng H, Ma W, Yin CB, et al., 2021. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom Constr, 127:103722.

[15]Gad AG, 2022. Particle swarm optimization algorithm and its applications: a systematic review. Arch Computat Methods Eng, 29(5):2531-2561.

[16]Gupta L, Jain R, Vaszkun G, 2016. Survey of important issues in UAV communication networks. IEEE Commun Surv Tutor, 18(2):1123-1152.

[17]Hamad RK, Rashid TA, 2024. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Syst, 15(4):1249-1274.

[18]He Y, Wang MR, 2024. An improved chaos sparrow search algorithm for UAV path planning. Sci Rep, 14(1):366.

[19]Jing XJ, Cheng L, 2013. An optimal PID control algorithm for training feedforward neural networks. IEEE Trans Ind Electron, 60(6):2273-2283.

[20]Kashyap AK, Parhi DR, 2021. Particle swarm optimization aided PID gait controller design for a humanoid robot. ISA Trans, 114:306-330.

[21]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Int Conf on Neural Networks, p.1942-1948.

[22]Kommula BN, Kota VR, 2022. Design of MFA-PSO based fractional order PID controller for effective torque controlled BLDC motor. Sustain Energy Technol Assess, 49:101644.

[23]Lange KL, Little RJA, Taylor JMG, 1989. Robust statistical modeling using the t distribution. J Am Stat Assoc, 84(408):881-896.

[24]Li AD, He Z, 2020. Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm. Comput Ind Eng, 149:106852.

[25]Liang HB, Zou JL, Zuo K, et al., 2020. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech Syst Sig Process, 142:106708.

[26]Liu YJ, Xu H, Zhang YG, 2017. Burner-electrode position control of calcium carbide furnace based on BP-PID controller. IEEE Int Conf on Mechatronics and Automation, p.810-815.

[27]Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adva Eng Softw, 69:46-61.

[28]Mishra AK, Das SR, Ray PK, et al., 2020. PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements. IEEE Access, 8:74497-74512.

[29]Mohan BM, Sinha A, 2008. Analytical structure and stability analysis of a fuzzy PID controller. Appl Soft Comput, 8(1):749-758.

[30]Mortazavi A, 2022. Interactive fuzzy Bayesian search algorithm: a new reinforced swarm intelligence tested on engineering and mathematical optimization problems. Expert Syst Appl, 187:115954.

[31]Mortazavi A, 2024. A fuzzy reinforced Jaya algorithm for solving mathematical and structural optimization problems. Soft Comput, 28(3):2181-2206.

[32]Mortazavi A, Toğan V, Moloodpoor M, 2019. Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm. Adv Eng Softw, 127:106-123.

[33]Mughees A, Mohsin SA, 2020. Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm. IEEE Access, 8:116704-116723.

[34]Parpinelli RS, Teodoro FR, Lopes HS, 2012. A comparison of swarm intelligence algorithms for structural engineering optimization. Int J Num Methods Eng, 91(6):666-684.

[35]Preethi P, Mamatha HR, 2022. Region-based convolutional neural network for segmenting text in epigraphical images. Artif Intell Appl, 1(2):119-127.

[36]Qi Z, Shi Q, Zhang H, 2020. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Trans Ind Electron, 67(7):5637-5646.

[37]Rana KPS, Kumar V, Sehgal N, et al., 2019. A novel dPdI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans, 93:312-324.

[38]Reddy MJ, Kumar DN, 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng Optim, 39(1):49-68.

[39]Shenassa MH, Khakpour K, 2008. Knowledge base expert system for tuning PID controllers using wireless technology. Int Conf on Computer and Communication Engineering, p.310-313.

[40]Silva F, Batista J, Souza D, et al., 2023. Control and identification of parameters of a joint of a manipulator based on PID, PID 2-DOF, and least squares. J Braz Soc Mech Sci Eng, 45(6):327.

[41]Sun QY, Chen JM, Zhou L, et al., 2024. A study on ice resistance prediction based on deep learning data generation method. Ocean Eng, 301:117467.

[42]Tang J, Liu G, Pan QT, 2021. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Automat Sin, 8(10):1627-1643.

[43]Viana FAC, 2016. A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int, 32(5):1975-1985.

[44]Wang YJ, He HY, Qu ZW, 2015. PSO-PID based temperature control method for bifilar helix calculable resistor. 12th IEEE Int Conf on Electronic Measurement & Instruments, p.722-725.

[45]Wang YP, Zhang JX, Zhang MJ, et al., 2024. Enhanced artificial ecosystem-based optimization for global optimization and constrained engineering problems. Cluster Comput, 27(7):10053-10092.

[46]Wang YZ, Jin QB, Zhang RD, 2017. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71:354-363.

[47]Xie GD, Zhang MJ, Yang M, et al., 2024. Economic dispatch of isolated microgrids based on enhanced sparrow search algorithm. Eng Lett, 32(4):753-760.

[48]Xu YX, Zhang MJ, Yang M, et al., 2024. Hybrid quantum particle swarm optimization and variable neighborhood search for flexible job-shop scheduling problem. J Manuf Syst, 73:334-348.

[49]Xue JK, Shen B, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Contr Eng, 8(1):22-34.

[50]Zhang MJ, Wen GH, 2024. Duck swarm algorithm: theory, numerical optimization, and applications. Cluster Comput, 27(5):6441-6469.

[51]Ziegler JG, Nichols NB, 1942. Optimum settings for automatic controllers. Trans Am Soc Mech Eng, 64(8):759-765.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE