CLC number: TP181
On-line Access: 2025-06-04
Received: 2024-06-07
Revision Accepted: 2024-10-04
Crosschecked: 2025-09-04
Cited: 0
Clicked: 757
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0002-1576-8357
https://orcid.org/0000-0001-8546-9972
https://orcid.org/0000-0003-4936-8773
Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG. Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400492 @article{title="Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Amiri MH, Mehrabi Hashjin N, Montazeri M, et al., 2024. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci Rep, 14(1):5032. ![]() [2]Ang KH, Chong G, Li Y, 2005. PID control system analysis, design, and technology. IEEE Trans Contr Syst Technol, 13(4):559-576. ![]() [3]Bujok P, Kolenovsky P, 2022. Eigen crossover in cooperative model of evolutionary algorithms applied to CEC 2022 single objective numerical optimisation. IEEE Congress on Evolutionary Computation, p.1-8. ![]() [4]Carlucho I, De Paula M, Acosta GG, 2020. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots. ISA Trans, 102:280-294. ![]() [5]Carvajal J, Chen GR, Ogmen H, 2000. Fuzzy PID controller: design, performance evaluation, and stability analysis. Inform Sci, 123(3-4):249-270. ![]() [6]Chen SY, Lin FJ, 2013. Decentralized PID neural network control for five degree-of-freedom active magnetic bearing. Eng Appl Artif Intell, 26(3):962-973. ![]() [7]Chen XY, Zhang MJ, Yang M, et al., 2024. A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems. Cluster Comput, 27(10):14685-14727. ![]() [8]Chien KL, Hrones JA, Reswick JB, 1952. On the automatic control of generalized passive systems. J Fluids Eng, 74(2):175-183. ![]() [9]Chopra N, Ansari MM, 2022. Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl, 198:116924. ![]() [10]Cohen GH, Coon GA, 1953. Theoretical consideration of retarded control. J Fluids Eng, 75(5):827-834. ![]() [11]Deng W, Chen R, He B, et al., 2012. A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Comput, 16(10):1707-1722. ![]() [12]Deng W, Cai X, Wu DQ, et al., 2024. MOQEA/D: multi-objective QEA with decomposition mechanism and excellent global search and its application. IEEE Trans Intell Transp Syst, 25(9):12517-12527. ![]() [13]El Khoukhi F, Boukachour J, El Hilali Alaoui A, 2017. The “dual-ants colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Comput Ind Eng, 106:236-255. ![]() [14]Feng H, Ma W, Yin CB, et al., 2021. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom Constr, 127:103722. ![]() [15]Gad AG, 2022. Particle swarm optimization algorithm and its applications: a systematic review. Arch Computat Methods Eng, 29(5):2531-2561. ![]() [16]Gupta L, Jain R, Vaszkun G, 2016. Survey of important issues in UAV communication networks. IEEE Commun Surv Tutor, 18(2):1123-1152. ![]() [17]Hamad RK, Rashid TA, 2024. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Syst, 15(4):1249-1274. ![]() [18]He Y, Wang MR, 2024. An improved chaos sparrow search algorithm for UAV path planning. Sci Rep, 14(1):366. ![]() [19]Jing XJ, Cheng L, 2013. An optimal PID control algorithm for training feedforward neural networks. IEEE Trans Ind Electron, 60(6):2273-2283. ![]() [20]Kashyap AK, Parhi DR, 2021. Particle swarm optimization aided PID gait controller design for a humanoid robot. ISA Trans, 114:306-330. ![]() [21]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Int Conf on Neural Networks, p.1942-1948. ![]() [22]Kommula BN, Kota VR, 2022. Design of MFA-PSO based fractional order PID controller for effective torque controlled BLDC motor. Sustain Energy Technol Assess, 49:101644. ![]() [23]Lange KL, Little RJA, Taylor JMG, 1989. Robust statistical modeling using the t distribution. J Am Stat Assoc, 84(408):881-896. ![]() [24]Li AD, He Z, 2020. Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm. Comput Ind Eng, 149:106852. ![]() [25]Liang HB, Zou JL, Zuo K, et al., 2020. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech Syst Sig Process, 142:106708. ![]() [26]Liu YJ, Xu H, Zhang YG, 2017. Burner-electrode position control of calcium carbide furnace based on BP-PID controller. IEEE Int Conf on Mechatronics and Automation, p.810-815. ![]() [27]Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adva Eng Softw, 69:46-61. ![]() [28]Mishra AK, Das SR, Ray PK, et al., 2020. PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements. IEEE Access, 8:74497-74512. ![]() [29]Mohan BM, Sinha A, 2008. Analytical structure and stability analysis of a fuzzy PID controller. Appl Soft Comput, 8(1):749-758. ![]() [30]Mortazavi A, 2022. Interactive fuzzy Bayesian search algorithm: a new reinforced swarm intelligence tested on engineering and mathematical optimization problems. Expert Syst Appl, 187:115954. ![]() [31]Mortazavi A, 2024. A fuzzy reinforced Jaya algorithm for solving mathematical and structural optimization problems. Soft Comput, 28(3):2181-2206. ![]() [32]Mortazavi A, Toğan V, Moloodpoor M, 2019. Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm. Adv Eng Softw, 127:106-123. ![]() [33]Mughees A, Mohsin SA, 2020. Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm. IEEE Access, 8:116704-116723. ![]() [34]Parpinelli RS, Teodoro FR, Lopes HS, 2012. A comparison of swarm intelligence algorithms for structural engineering optimization. Int J Num Methods Eng, 91(6):666-684. ![]() [35]Preethi P, Mamatha HR, 2022. Region-based convolutional neural network for segmenting text in epigraphical images. Artif Intell Appl, 1(2):119-127. ![]() [36]Qi Z, Shi Q, Zhang H, 2020. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Trans Ind Electron, 67(7):5637-5646. ![]() [37]Rana KPS, Kumar V, Sehgal N, et al., 2019. A novel dPdI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans, 93:312-324. ![]() [38]Reddy MJ, Kumar DN, 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng Optim, 39(1):49-68. ![]() [39]Shenassa MH, Khakpour K, 2008. Knowledge base expert system for tuning PID controllers using wireless technology. Int Conf on Computer and Communication Engineering, p.310-313. ![]() [40]Silva F, Batista J, Souza D, et al., 2023. Control and identification of parameters of a joint of a manipulator based on PID, PID 2-DOF, and least squares. J Braz Soc Mech Sci Eng, 45(6):327. ![]() [41]Sun QY, Chen JM, Zhou L, et al., 2024. A study on ice resistance prediction based on deep learning data generation method. Ocean Eng, 301:117467. ![]() [42]Tang J, Liu G, Pan QT, 2021. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Automat Sin, 8(10):1627-1643. ![]() [43]Viana FAC, 2016. A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int, 32(5):1975-1985. ![]() [44]Wang YJ, He HY, Qu ZW, 2015. PSO-PID based temperature control method for bifilar helix calculable resistor. 12th IEEE Int Conf on Electronic Measurement & Instruments, p.722-725. ![]() [45]Wang YP, Zhang JX, Zhang MJ, et al., 2024. Enhanced artificial ecosystem-based optimization for global optimization and constrained engineering problems. Cluster Comput, 27(7):10053-10092. ![]() [46]Wang YZ, Jin QB, Zhang RD, 2017. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71:354-363. ![]() [47]Xie GD, Zhang MJ, Yang M, et al., 2024. Economic dispatch of isolated microgrids based on enhanced sparrow search algorithm. Eng Lett, 32(4):753-760. ![]() [48]Xu YX, Zhang MJ, Yang M, et al., 2024. Hybrid quantum particle swarm optimization and variable neighborhood search for flexible job-shop scheduling problem. J Manuf Syst, 73:334-348. ![]() [49]Xue JK, Shen B, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Contr Eng, 8(1):22-34. ![]() [50]Zhang MJ, Wen GH, 2024. Duck swarm algorithm: theory, numerical optimization, and applications. Cluster Comput, 27(5):6441-6469. ![]() [51]Ziegler JG, Nichols NB, 1942. Optimum settings for automatic controllers. Trans Am Soc Mech Eng, 64(8):759-765. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>