CLC number: TP391
On-line Access: 2025-06-04
Received: 2024-07-14
Revision Accepted: 2024-10-11
Crosschecked: 2025-06-04
Cited: 0
Clicked: 1471
Li CHEN, Fan ZHANG, Guangwei XIE, Yanzhao GAO, Xiaofeng QI, Mingqian SUN. S3Det: a fast object detector for remote sensing images based on artificial to spiking neural network conversion[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400594 @article{title="S3Det: a fast object detector for remote sensing images based on artificial to spiking neural network conversion", %0 Journal Article TY - JOUR
S3Det:一种基于人工-脉冲神经网络转换的遥感影像目标快速检测模型1国家数字交换系统工程技术研究中心,中国郑州市,450003 2复旦大学计算与智能创新学院,中国上海市,201203 3东南大学网络空间安全学院,中国南京市,211189 摘要:人工神经网络(ANN)在遥感影像目标检测方面取得显著进展。然而,低检测效率和高能耗一直是遥感领域的重要瓶颈。脉冲神经网络(SNN)以稀疏脉冲的形式处理信息,为计算机视觉任务带来高效能优势。不过,大部分研究工作集中在简单分类任务上,仅有少数研究者将其应用于自然图像的目标检测。本文考虑到生物大脑的简约特性,提出一种人工-脉冲神经网络快速转换方法,用于遥感影像检测。基于群组稀疏特征建立快速稀疏模型进行脉冲序列感知,并对原始图像进行变换域内的稀疏重采样,从而快速感知图像特征和编码的脉冲序列。此外,为满足相关遥感场景中的精度要求,从理论上分析了转换误差,提出通道自衰减加权归一化方法,以消除神经元过度激活。所提遥感影像目标检测模型被称作S3Det。基于一个大型公开遥感数据集的实验表明,S3Det实现了与ANN相似的精度。同时,我们的转换网络稀疏度为原始算法的24.32%;能耗仅为1.46 W,是原始算法的1/122。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Azimi SM, Vig E, Bahmanyar R, et al., 2018. Towards multi-class object detection in unconstrained remote sensing imagery. Proc 14th Asian Conf on Computer Vision, p.150-165. ![]() [2]Chen GH, Pei GS, Tang Y, et al., 2022. A novel multi-sample data augmentation method for oriented object detection in remote sensing images. Proc IEEE 24th Int Workshop on Multimedia Signal Processing, p.1-7. ![]() [3]Chen K, Wang JQ, Pang JM, et al., 2019. MMDetection: open MMlab detection toolbox and benchmark. https://arxiv.org/abs/1906.07155 ![]() [4]Chen L, Zhang F, Guo W, et al., 2023. SFTN: fast object detection for aerial images. IET Image Process, 17(13):3897-3907. ![]() [5]Cheng G, Zhou PC, Han JW, et al., 2016a. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans Geosci Remote Sens, 54(12):7405-7415. ![]() [6]Cheng G, Zhou PC, Han JW, 2016b. RIFD-CNN: rotation-invariant and Fisher discriminative convolutional neural networks for object detection. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2884-2893. ![]() [7]Ding J, Xue N, Long Y, et al., 2019. Learning RoI Transformer for oriented object detection in aerial images. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2844-2853. ![]() [8]Eldar YC, Kutyniok G, 2012. Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge, UK. ![]() [9]Everingham M, van Gool L, Williams CK, et al., 2010. The PASCAL Visual Object Classes (VOC) challenge. Int J Comput Vis, 88(2):303-338. ![]() [10]Gong MG, Li JZ, Zhang YR, et al., 2022. Two-path aggregation attention network with quad-patch data augmentation for few-shot scene classification. IEEE Trans Geosci Remote Sens, 60:4511616. ![]() [11]Han JM, Ding J, Li J, et al., 2022. Align deep features for oriented object detection. IEEE Trans Geosci Remote Sens, 60:5602511. ![]() [12]He X, Ma SP, He LY, et al., 2022. High-resolution polar network for object detection in remote sensing images. IEEE Geosci Remote Sens Lett, 19:6000605. ![]() [13]Horowitz M, 2014. 1.1 Computing’s energy problem (and what we can do about it). Proc IEEE Int Solid-State Circuits Conf Digest of Technical Papers, p.10-14. ![]() [14]Hu YF, Zheng Q, Jiang XD, et al., 2023. Fast-SNN: fast spiking neural network by converting quantized ANN. IEEE Trans Patt Anal Mach Intell, 45(12):14546-14562. ![]() [15]Huang ZC, Li W, Xia XG, et al., 2022. A general Gaussian heatmap label assignment for arbitrary-oriented object detection. IEEE Trans Image Process, 31:1895-1910. ![]() [16]Jiang YQ, Tan ZY, Wang JY, et al., 2022. GiraffeDet: a heavy-neck paradigm for object detection. https://arxiv.org/abs/2202.04256 ![]() [17]Jiang YY, Zhu XY, Wang XB, et al., 2018. R2CNN: rotational region CNN for arbitrarily-oriented scene text detection. Proc 24th Int Conf on Pattern Recognition, p.3610-3615. ![]() [18]Kim S, Park S, Na B, et al., 2020. Spiking-YOLO: spiking neural network for energy-efficient object detection. Proc 34th AAAI Conf on Artificial Intelligence, p.11270-11277. ![]() [19]Komárek A, Lesaffre E, 2008. Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution. Comput Stat Data Anal, 52(7):3441-3458. ![]() [20]LeCun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324. ![]() [21]Li Y, He X, Dong YT, et al., 2022. Spike calibration: fast and accurate conversion of spiking neural network for object detection and segmentation. https://arxiv.org/abs/2207.02702 ![]() [22]Lin TY, Maire M, Belongie S, et al., 2014. Microsoft COCO: common objects in context. Proc 13th European Conf on Computer Vision, p.740-755. ![]() [23]Lin TY, Goyal P, Girshick R, et al., 2017. Focal loss for dense object detection. Proc IEEE Int Conf on Computer Vision, p.2999-3007. ![]() [24]Liu WX, Luo B, Liu J, et al., 2022. Synthetic data augmentation using multiscale attention CycleGAN for aircraft detection in remote sensing images. IEEE Geosci Remote Sens Lett, 19:4009205. ![]() [25]Liu ZK, Wang HZ, Weng LB, et al., 2016. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci Remote Sens Lett, 13(8):1074-1078. ![]() [26]Ma JQ, Shao WY, Ye H, et al., 2018. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multim, 20(11):3111-3122. ![]() [27]Maass W, 1997. Networks of spiking neurons: the third generation of neural network models. Neur Netw, 10(9):1659-1671. ![]() [28]Merolla PA, Arthur JV, Alvarez-Icaza R, et al., 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197):668-673. ![]() [29]Ming Q, Zhou ZQ, Miao LJ, et al., 2021. Dynamic anchor learning for arbitrary-oriented object detection. Proc 35th AAAI Conf on Artificial Intelligence, Electronic Network, p.2355-2363. ![]() [30]Rathi N, Roy K, 2023. DIET-SNN: a low-latency spiking neural network with direct input encoding and leakage and threshold optimization. IEEE Trans Neur Netw Learn Syst, 34(6):3174-3182. ![]() [31]Rueckauer B, Liu SC, 2021. Temporal pattern coding in deep spiking neural networks. Proc Int Joint Conf on Neural Networks, p.1-8. ![]() [32]Rueckauer B, Lungu IA, Hu YH, et al., 2017. Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front Neurosci, 11:682. ![]() [33]Sinha D, El-Sharkawy M, 2019. Thin MobileNet: an enhanced MobileNet architecture. Proc IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conf, p.280-285. ![]() [34]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. ![]() [35]Wang A, Chen H, Liu LH, et al., 2024. YOLOv10: real-time end-to-end object detection. https://arxiv.org/abs/2405.14458 ![]() [36]Xia GS, Bai X, Ding J, et al., 2018. DOTA: a large-scale dataset for object detection in aerial images. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3974-3983. ![]() [37]Xie XX, Lang CB, Miao SC, et al., 2023. Mutual-assistance learning for object detection. IEEE Trans Patt Anal Mach Intell, 45(12):15171-15184. ![]() [38]Xie XX, Cheng G, Li QY, et al., 2024a. Fewer is more: efficient object detection in large aerial images. Sci China Inform Sci, 67(1):112106. ![]() [39]Xie XX, Cheng G, Rao CF, et al., 2024b. Oriented object detection via contextual dependence mining and penalty-incentive allocation. IEEE Trans Geosci Remote Sens, 62:5618010. ![]() [40]Xie XX, Cheng G, Wang JB, et al., 2024c. Oriented R-CNN and beyond. Int J Comput Vis, 132(7):2420-2442. ![]() [41]Xiong YY, Liu HX, Gupta S, et al., 2021. MobileDets: searching for object detection architectures for mobile accelerators. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.3824-3833. ![]() [42]Yang X, Yan JC, 2022. On the arbitrary-oriented object detection: classification based approaches revisited. Int J Comput Vis, 130(5):1340-1365. ![]() [43]Yang X, Yang JR, Yan JC, et al., 2019. SCRDet: towards more robust detection for small, cluttered and rotated objects. Proc IEEE/CVF Int Conf on Computer Vision, p.8231-8240. ![]() [44]Yang X, Yan JC, Feng ZM, et al., 2021a. R3Det: refined single-stage detector with feature refinement for rotating object. Proc 35th AAAI Conf on Artificial Intelligence, p.3163-3171. ![]() [45]Yang X, Yan JC, Ming Q, et al., 2021b. Rethinking rotated object detection with Gaussian Wasserstein distance loss. Proc 38th Int Conf on Machine Learning, p.11830-11841. ![]() [46]Yao M, Zhao GS, Zhang HY, et al., 2023. Attention spiking neural networks. IEEE Trans Patt Anal Mach Intell, 45(8):9393-9410. ![]() [47]Zhang C, Lam KM, Wang Q, 2023. CoF-Net: a progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Trans Geosci Remote Sens, 61:5600617. ![]() [48]Zhang GJ, Lu SJ, Zhang W, 2019. CAD-Net: a context-aware detection network for objects in remote sensing imagery. IEEE Trans Geosci Remote Sens, 57(12):10015-10024. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>