
CLC number: TP391.7
On-line Access: 2025-10-13
Received: 2024-07-21
Revision Accepted: 2025-03-25
Crosschecked: 2025-10-13
Cited: 0
Clicked: 879
Citations: Bibtex RefMan EndNote GB/T7714
Jie YANG, Kai QIAO, Jian CHEN, Chen CHEN, Lixiang GUO, Bin YAN. A review of automatic schematic generation techniques and their application to printed circuit boards[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400612 @article{title="A review of automatic schematic generation techniques and their application to printed circuit boards", %0 Journal Article TY - JOUR
自动原理图生成技术综述及其在印刷电路板中的应用信息工程大学,中国郑州市,450000 摘要:印刷电路板(PCB)是电子设备的基石,其原理图对系统性能与可靠性具有至关重要的影响。随着电子设备在社会中的广泛应用,其维护、安全、后门以及其他潜在问题备受关注。自动原理图生成(ASG)凭借其自主生成电路原理图的独特能力,不仅在电子设计自动化(EDA)中扮演着举足轻重的角色,更能助力解析PCB设备的基本原理,从而有效应对这些深层问题。然而,受制于PCB日趋精密化的制造工艺以及逆向工程固有的法律和伦理争议,相关技术发展面临显著瓶颈。为突破技术壁垒,推动技术进步,本文系统梳理现有ASG技术,深入剖析其核心算法--布局与布线技术,并针对该技术在PCB逆向工程中的应用,详细分析当前面临的挑战和难题。围绕这些挑战,本文探讨了可行解决方案,旨在推动自动PCB原理图生成技术的研究,为EDA和PCB逆向工程自动化贡献新的力量。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abel LC, 1972. On the ordering of connections for automatic wire routing. IEEE Trans Comput, C-21(11):1227-1233. ![]() [2]Agnesina A, Chang K, Lim SK, 2020. VLSI placement parameter optimization using deep reinforcement learning. Proc IEEE/ACM Int Conf on Computer-Aided Design, p.1-9. ![]() [3]Arsintescu BG, 1996. A method for analog circuits visualization. Proc Int Conf on Computer Design. VLSI in Computers and Processors, p.454-459. ![]() [4]Botero UJ, Wilson R, Lu HW, et al., 2020. Hardware trust and assurance through reverse engineering: a survey and outlook from image analysis and machine learning perspectives. ![]() [5]Cheng RY, Yan JC, 2021. On joint learning for solving placement and routing in chip design. Proc 35th Int Conf on Neural Information Processing Systems, Article 1262. ![]() [6]Chu C, Wong YC, 2008. FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design. IEEE Trans Computer-Aided Des Integr Circ Syst, 27(1):70-83. ![]() [7]Du XB, Wang CH, Zhong RZ, et al., 2023. HubRouter: learning global routing via hub generation and pin-hub connection. Proc 37th Int Conf on Neural Information Processing Systems, Article 3435. ![]() [8]Frezza ST, Levitan SP, 1993. SPAR: a schematic place and route system. IEEE Trans Computer-Aided Des Integr Circ Syst, 12(7):956-973. ![]() [9]Fu RL, Zhang ZM, Tang GM, et al., 2020. Design automation methodology from RTL to gate-level netlist and schematic for RSFQ logic circuits. Proc Great Lakes Symp on VLSI, p.145-150. ![]() [10]Garg B, Agrawal A, Sehgal R, et al., 2008. Partitioning, floor planning, detailed placement and routing techniques for schematic generation of analog netlist. Proc IEEE East-West Design & Test Symp, p.379-382. ![]() [11]Goldie A, Mirhoseini A, 2020. Placement optimization with deep reinforcement learning. Proc Int Symp on Physical Design, p.3-7. ![]() [12]Hanan M, 1966. On Steiner’s problem with rectilinear distance. SIAM J Appl Math, 14(2):255-265. ![]() [13]Hart PE, Nilsson NJ, Raphael B, 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern, 4(2):100-107. ![]() [14]Hong XN, Lin T, Shi YQ, et al., 2023. GraphClusNet: a hierarchical graph neural network for recovered circuit netlist partitioning. IEEE Trans Artif Intell, 4(5):1199-1213. ![]() [15]Hsu HY, Lin MPH, 2022. Automatic analog schematic diagram generation based on building block classification and reinforcement learning. Proc ACM/IEEE 4th Workshop on Machine Learning for CAD, p.43-48. ![]() [16]Jehng YS, Chen LG, Parng TM, 1991. ASG: automatic schematic generator. Integration, 11(1):11-27. ![]() [17]Jumper J, Evans R, Pritzel A, et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583-589. ![]() [18]Kastner R, Bozorgzadeh E, Sarrafzadeh M, 2000. Predictable routing. IEEE/ACM Int Conf on Computer-Aided Design, p.110-113. ![]() [19]Katsuki K, Shin D, Onizawa N, et al., 2022. Fast solving complete 2000-node optimization using stochastic-computing simulated annealing. 29th IEEE Int Conf on Electronics, Circuits and Systems, p.1-4. ![]() [20]Kim NH, Kim KS, Choi KM, et al., 2000. RightTopologizer: an efficient schematic generator for multi-level optimization. Proc 13th Annual IEEE Int ASIC/SOC Conf, p.387-391. ![]() [21]Lageweg CR, 1998. Designing an Automatic Schematic Generator for a Netlist Description. Technical Report No. 1-68340-44(1998)03, Laboratory of Computer Architecture and Digital Techniques, Delft University of Technology, Delft, the Netherlands. ![]() [22]Lai Y, Liu JX, Tang ZT, et al., 2023. ChiPFormer: transferable chip placement via offline decision transformer. Proc 40th Int Conf on Machine Learning, Article 757. ![]() [23]Lee TD, McNamee LP, 1989. Structure optimization in logic schematic generation. IEEE Int Conf on Computer-Aided Design Digest of Technical Papers, p.330-333. ![]() [24]Lee TD, McNamee LP, 1992. Aesthetic routing for transistor schematics. IEEE/ACM Int Conf on Computer-Aided Design, p.35-38. ![]() [25]Liao HG, Zhang WT, Dong XL, et al., 2020. A deep reinforcement learning approach for global routing. J Mech Des, 142(6):061701. ![]() [26]Mata RC, Azmib S, Daudc R, et al., 2006. Reverse engineering for obsolete single layer printed circuit board (PCB). Int Conf on Computing & Informatics, p.1-7. ![]() [27]Meng D, Zheng YL, 2022. Circuit partitioning for PCB netlist based on net attributes. Int Conf on Machine Learning and Cybernetics, p.31-36. ![]() [28]Mnih V, Kavukcuoglu K, Silver D, et al., 2013. Playing Atari with deep reinforcement learning. ![]() [29]Ou HC, Chien HCC, Chang YW, 2014. Nonuniform multilevel analog routing with matching constraints. IEEE Trans Computer-Aided Des Integr Circ Syst, 33(12):1942-1954. ![]() [30]Rematska G, Bourbakis NG, 2016. A survey on reverse engineering of technical diagrams. 7th Int Conf on Information, Intelligence, Systems & Applications, p.1-8. ![]() [31]Roy R, Raiman J, Kant N, et al., 2021. PrefixRL: optimization of parallel prefix circuits using deep reinforcement learning. 58th ACM/IEEE Design Automation Conf, p.853-858. ![]() [32]Sechen C, 1988. VLSI Placement and Global Routing Using Simulated Annealing. Springer, New York, USA, p.181-243. ![]() [33]Sergey G, Daniil Z, Rustam C, 2019. Simulated annealing based placement optimization for reconfigurable systems-on-chip. IEEE Conf of Russian Young Researchers in Electrical and Electronic Engineering, p.1597-1600. ![]() [34]Sharma A, Dyrkolbotn GO, Overlier L, et al., 2022. A state-of-the-art reverse engineering approach for combating hardware security vulnerabilities at the system and PCB level in IoT devices. IEEE Physical Assurance and Inspection of Electronics, p.1-7. ![]() [35]Shi YQ, Xue K, Lei S, et al., 2023. Macro placement by wire-mask-guided black-box optimization. Proc 37th Int Conf on Neural Information Processing Systems, Article 299. ![]() [36]Steinbrunn M, Moerkotte G, Kemper A, 1997. Heuristic and randomized optimization for the join ordering problem. VLDB J, 6(3):191-208. ![]() [37]Stok L, Koster GP, 1989. From network to artwork. Proc 26th ACM/IEEE Design Automation Conf, p.686-689. ![]() [38]Swinkels GM, Hafer L, 1990. Schematic generation with an expert system. IEEE Trans Computer-Aided Des Integr Circ Syst, 9(12):1289-1306. ![]() [39]Tehranipoor M, Koushanfar F, 2010. A survey of hardware Trojan taxonomy and detection. IEEE Des Test Comput, 27(1):10-25. ![]() [40]Vashisht D, Rampal H, Liao HG, et al., 2020. Placement in integrated circuits using cyclic reinforcement learning and simulated annealing. ![]() [41]Wang HR, Wang K, Yang JC, et al., 2020. GCN-RL circuit designer: transferable transistor sizing with graph neural networks and reinforcement learning. 57th ACM/IEEE Design Automation Conf, p.1-6. ![]() [42]Wu CY, Graeb H, Hu J, 2015. A pre-search assisted ILP approach to analog integrated circuit routing. 33rd IEEE Int Conf on Computer Design, p.244-250. ![]() [43]Wu YP, 2009. Novel method of analog circuit schematic synthesis. IEEE 8th Int Conf on ASIC, p.1209-1212. ![]() [44]Yang J, Qiao K, Shi SH, et al., 2024. AEM-PCB reverser: circuit schematic generation in PCB reverse engineering using reinforcement learning based on aesthetic evaluation metric. IEEE Trans Computer-Aided Des Integr Circ Syst, 43(5):1608-1612. ![]() [45]Zhong RZ, Du XB, Kai SX, et al., 2024a. FlexPlanner: flexible 3D floorplanning via deep reinforcement learning in hybrid action space with multi-modality representation. Proc 38th Int Conf on Neural Information Processing Systems, p.49252-49278. ![]() [46]Zhong RZ, Ye JJ, Tang ZT, et al., 2024b. PreRoutGNN for timing prediction with order preserving partition: global circuit pre-training, local delay learning and attentional cell modeling. Proc 38th AAAI Conf on Artificial Intelligence, p.17087-17095. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>