CLC number: TP391.7
On-line Access: 2025-10-13
Received: 2024-08-02
Revision Accepted: 2025-03-07
Crosschecked: 2025-10-13
Cited: 0
Clicked: 755
Citations: Bibtex RefMan EndNote GB/T7714
Zejia LYU, Jizhong SHEN, Xi CHEN. Algorithm and evaluation of generating pseudo-datasets for integrated circuit power analysis[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400677 @article{title="Algorithm and evaluation of generating pseudo-datasets for integrated circuit power analysis", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ajayi T, Blaauw D, 2019. OpenROAD: toward a self-driving, open-source digital layout implementation tool chain. Proc Government Microcircuit Applications and Critical Technology Conf, p.1105-1110. ![]() [2]Amarú L, Gaillardon PE, De Micheli G, 2015. The EPFL combinational benchmark suite. Proc 24th Int Workshop on Logic & Synthesis. ![]() [3]Amid A, Biancolin D, Gonzalez A, et al., 2020. Chipyard: integrated design, simulation, and implementation framework for custom SoCs. IEEE Micro, 40(4):10-21. ![]() [4]Brglez F, Bryan D, Kozminski K, 1989. Combinational profiles of sequential benchmark circuits. IEEE Int Symp on Circuits and Systems, p.1929-1934. ![]() [5]Burch R, Najm F, Yang P, et al., 1992. McPOWER: a Monte Carlo approach to power estimation. IEEE/ACM Int Conf on Computer-Aided Design, p.90-97. ![]() [6]Chai ZM, Zhao YX, Lin YB, et al., 2022. CircuitNet: an open-source dataset for machine learning applications in electronic design automation (EDA). Sci China Inform Sci, 65(12):227401. ![]() [7]Chowdhury AB, Tan B, Karri R, et al., 2021. OpenABC-D: a large-scale dataset for machine learning guided integrated circuit synthesis. ![]() [8]Corno F, Reorda M, Squillero G, 2000. RT-level ITC’99 benchmarks and first ATPG results. IEEE Des Test Comput, 17(3):44-53. ![]() [9]Fang WJ, Lu Y, Liu S, et al., 2023. MasterRTL: a pre-synthesis PPA estimation framework for any RTL design. IEEE/ACM Int Conf on Computer-Aided Design, p.1-9. ![]() [10]Gautier Q, Althoff A, Meng PF, et al., 2016. Spector: an OpenCL FPGA benchmark suite. Int Conf on Field-Programmable Technology, p.141-148. ![]() [11]Hansen MC, Yalcin H, Hayes JP, 1999. Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering. IEEE Des Test Comput, 16(3):72-80. ![]() [12]Kaeslin H, 2008. Digital Integrated Circuit Design: from VLSI Architectures to CMOS Fabrication. Cambridge University Press, New York, USA, p.386-458. ![]() [13]Khan S, Shi ZY, Li M, et al., 2024. DeepSeq: deep sequential circuit learning. Design, Automation & Test in Europe Conf & Exhibition, p.1-2. ![]() [14]Kumar AKA, Gerstlauer A, 2019. Learning-based CPU power modeling. ACM/IEEE 1st Workshop on Machine Learning for CAD, p.1-6. ![]() [15]Kumar AKA, Al-Salamin S, Amrouch H, et al., 2023. Machine learning-based microarchitecture-level power modeling of CPUs. IEEE Trans Comput, 72(4):941-956. ![]() [16]Li M, Khan S, Shi Z, et al., 2022. DeepGate: learning neural representations of logic gates. Proc 59th ACM/IEEE Design Automation Conf, p.667-672. ![]() [17]Najm FN, 1993. Transition density: a new measure of activity in digital circuits. IEEE Trans Comput-Aided Des Integr Circ Syst, 12(2):310-323. ![]() [18]Nasser Y, Lorandel J, Prévotet JC, et al., 2021. RTL to transistor level power modeling and estimation techniques for FPGA and ASIC: a survey. IEEE Trans Comput-Aided Des Integr Circ Syst, 40(3):479-493. ![]() [19]OnchipUIS, 2016. MRISCV. https://github.com/onchipuis/mriscv [Accessed on July 26, 2024]. ![]() [20]OnchipUIS, 2021. VexRiscv. https://github.com/SpinalHDL/VexRiscv [Accessed on July 26, 2024]. ![]() [21]OpenCores Team, 2024. OpenCores. https://opencores.org [Accessed on July 26, 2024]. ![]() [22]Parulkar I, Wood A, Hoe JC, et al., 2008. OpenSPARC: an open platform for hardware reliability experimentation. 4th Workshop on Silicon Errors in Logic-System Effects, p.1-6. ![]() [23]Rakesh MB, Das P, Sai Pranav KR, et al., 2023. GRILAPE: graph representation inductive learning-based average power estimation for frontend ASIC RTL designs. 36th Int Conf on VLSI Design and 22nd Int Conf on Embedded Systems, p.1-6. ![]() [24]Shi ZY, Pan HY, Khan S, et al., 2023. DeepGate2: functionality-aware circuit representation learning. IEEE/ACM Int Conf on Computer-Aided Design, p.1-6. ![]() [25]Wei ZG, Arora A, Li RH, et al., 2023. HLSDataset: open-source dataset for ML-assisted FPGA design using high level synthesis. IEEE 34th Int Conf on Application-Specific Systems, Architectures and Processors, p.197-204. ![]() [26]Xie ZY, 2023. Efficient runtime power modeling with on-chip power meters. Proc Int Symp on Physical Design, p.168-174. ![]() [27]Xie ZY, Pan JY, Chang CC, et al., 2023a. The dark side: security and reliability concerns in machine learning for EDA. IEEE Trans Comput-Aided Des Integr Circ Syst, 42(4):1171-1184. ![]() [28]Xie ZY, Zhang T, Peng YF, 2023b. Security and reliability challenges in machine learning for EDA: latest advances. 24th Int Symp on Quality Electronic Design, p.1-6. ![]() [29]YosysHQ, 2021. PicoRV32—a Size-Optimized RISC-V CPU. https://github.com/YosysHQ/picorv32 [Accessed on July 26, 2024]. ![]() [30]Zhang YQ, Ren HX, Khailany B, 2020. GRANNITE: graph neural network inference for transferable power estimation. 57th ACM/IEEE Design Automation Conf, p.1-6. ![]() [31]Zhou GF, Zhou JY, Lin HJ, 2018. Research on NVIDIA deep learning accelerator. 12th IEEE Int Conf on Anti-counterfeiting, Security, and Identification, p.192-195. ![]() [32]Zhou Y, Ren HX, Zhang YQ, et al., 2019. PRIMAL: power inference using machine learning. Proc 56th Annual Design Automation Conf, Article 39. ![]() [33]Zou SN, Zhang JX, Shi BZ, et al., 2024. PowerSyn: a logic synthesis framework with early power optimization. IEEE Trans Comput-Aided Des Integr Circ Syst, 43(1):203-216. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>