CLC number: TP277; TP311
On-line Access: 2025-07-28
Received: 2024-08-29
Revision Accepted: 2024-12-30
Crosschecked: 2025-07-30
Cited: 0
Clicked: 526
Citations: Bibtex RefMan EndNote GB/T7714
Binkun LIU, Zhenyi XU, Yu KANG, Yang CAO, Yunbo ZHAO. Multisensor contrast neural network for remaining useful life prediction of rolling bearings under scarce labeled data[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400753 @article{title="Multisensor contrast neural network for remaining useful life prediction of rolling bearings under scarce labeled data", %0 Journal Article TY - JOUR
标签数据稀缺下基于多传感器对比神经网络的滚动轴承剩余使用寿命预测1中国科学技术大学自动化系,中国合肥市,230027 2系统控制与信息处理教育部重点实验室,中国上海市,200240 3合肥综合性国家科学中心人工智能研究院,中国合肥市,230088 4江淮前沿技术协同创新中心,中国合肥市,230000 摘要:在智能制造中,在标签数据稀缺条件下预测轴承剩余使用寿命(RUL)具有重要意义。当前方法在多传感器场景中常面临不同退化阶段行为相似性的挑战。针对跨传感器相似性可增强退化特征判别力的特性,本文提出一种标签稀缺条件下的多传感器对比式RUL预测方法。利用跨传感器相似性,从共现空间中丰富的无标签传感器数据中挖掘蕴含设备健康状态的多传感器相似表征。具体而言,首先利用ResNet18将不同传感器特征映射至共现空间,其次基于共现空间中的跨传感器相似性,通过交替对比学习从海量无标签数据中提取表征设备退化阶段的多传感器相似表征,最后利用有限标签数据对模型进行微调,实现RUL预测。在公开轴承数据集上的实验表明,相较于现有最优方法,平均绝对百分比误差降低至少0.058,评价得分提升至少0.122。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akrim A, Gogu C, Vingerhoeds R, et al., 2023. Self-supervised learning for data scarcity in a fatigue damage prognostic problem. Eng Appl Artif Intell, 120: 105837. ![]() [2]Behera S, Misra R, 2023. A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems. Eng Appl Artif Intell, 119: 105712. ![]() [3]Deng YF, Du SC, Wang D, et al., 2023. A calibration-based hybrid transfer learning framework for RUL prediction of rolling bearing across different machines. IEEE Trans Instrum Meas, 72:1-15. ![]() [4]Ding YF, Zhuang JC, Ding P, et al., 2022. Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings. Reliab Eng Syst Saf, 218: 108126. ![]() [5]Ding YF, Jia MP, Cao YD, et al., 2023. Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions. Knowl-Based Syst, 261: 110199. ![]() [6]Dong SJ, Xiao JF, Hu XL, et al., 2023. Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing. Reliab Eng Syst Saf, 230: 108914. ![]() [7]He KM, Fan HQ, Wu YX, et al., 2020. Momentum contrast for unsupervised visual representation learning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9729-9738. ![]() [8]Kong ZQ, Jin XH, Xu ZG, et al., 2023. A contrastive learning framework enhanced by unlabeled samples for remaining useful life prediction. Reliab Eng Syst Saf, 234: 109163. ![]() [9]Korbar B, Tran D, Torresani L, 2018. Cooperative learning of audio and video models from self-supervised synchronization. Proc 32nd Int Conf on Neural Information Processing Systems, p.7774-7785. ![]() [10]Krokotsch T, Knaak M, Gühmann C, et al., 2022. Improving semi-supervised learning for remaining useful lifetime estimation through self-supervision. Int J Progn Health Manage, 13(1):853. ![]() [11]Li Q, Yan CF, Chen GY, et al., 2022. Remaining useful life prediction of rolling bearings based on risk assessment and degradation state coefficient. ISA Trans, 129:413-428. ![]() [12]Li Y, Wang HJ, Li JW, et al., 2022. A 2-D long short-term memory fusion networks for bearing remaining useful life prediction. IEEE Sens J, 22(22):21806-21815. ![]() [13]Melendez I, Doelling R, Bringmann O, 2019. Self-supervised multi-stage estimation of remaining useful life for electric drive units. Proc IEEE Int Conf on Big Data, p.4402-4411. ![]() [14]Morales-Espejel GE, Gabelli A, 2020. A model for rolling bearing life with surface and subsurface survival: surface thermal effects. Wear, 460-461: 203446. ![]() [15]Nectoux P, Gouriveau R, Medjaher K, et al., 2012. PRONOSTIA: an experimental platform for bearings accelerated degradation tests. Proc IEEE Int Conf on Prognostics and Health Management, p.1-8. ![]() [16]Saeed A, Salim FD, Ozcelebi T, et al., 2021. Federated selfsupervised learning of multisensor representations for embedded intelligence. IEEE Int Things J, 8(2):1030-1040. ![]() [17]Souza JS, Bezerril MC, Silva MA, et al., 2021. Motor speed estimation and failure detection of a small UAV using density of maxima. Front Inform Technol Electron Eng, 22(7):1002-1009. ![]() [18]Tao F, Qi QL, Liu A, et al., 2018. Data-driven smart manufacturing. J Manuf Syst, 48:157-169. ![]() [19]Tian YL, Krishnan D, Isola P, 2020. Contrastive multiview coding. Proc 16th European Conf on Computer Vision, p.776-794. ![]() [20]Wang B, Lei YG, Li NP, et al., 2020. Multiscale convolutional attention network for predicting remaining useful life of machinery. IEEE Trans Ind Electron, 68(8):7496-7504. ![]() [21]Wang WJ, Wang Y, Wang J, et al., 2022. Ensemble enhanced active learning mixture discriminant analysis model and its application for semi-supervised fault classification. Front Inform Technol Electron Eng, 23(12):1814-1827. ![]() [22]Wang X, Wang TY, Ming AB, et al., 2021. Cross-operating condition degradation knowledge learning for remaining useful life estimation of bearings. IEEE Trans Instrum Meas, 70: 3520911. ![]() [23]Wang YT, Cai F, Pan ZQ, et al., 2023. Self-supervised graph learning with target-adaptive masking for session-based recommendation. Front Inform Technol Electron Eng, 24(1):73-87. ![]() [24]Wen YX, Wu JG, Zhou Q, et al., 2019. Multiple-change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement. IEEE Trans Autom Sci Eng, 16(2):613-628. ![]() [25]Yang L, Liao YH, Duan RK, et al., 2023. A bidirectional recursive gated dual attention unit based RUL prediction approach. Eng Appl Artif Intell, 120: 105885. ![]() [26]Zhang BM, Mao YF, Chen X, et al., 2021. Self-supervised learning advance fault diagnosis of rotating machinery. Proc 2nd Int Conf on Neural Computing for Advanced Applications, p.319-332. ![]() [27]Zhang WW, Chen DJ, Kong Y, 2021. Self-supervised joint learning fault diagnosis method based on three-channel vibration images. Sensors, 21(14):4774. ![]() [28]Zhu SH, Pu J, 2021. A self-supervised method for treatment recommendation in sepsis. Front Inform Technol Electron Eng, 22(7):926-939. ![]() [29]Zou WH, Lu ZQ, Hu ZY, et al., 2023. Remaining useful life estimation of bearing using deep multiscale window-based transformer. IEEE Trans Instrum Meas, 72: 3514211. ![]() [30]Zuo T, Zhang K, Zheng Q, et al., 2023. A hybrid attentionbased multi-wavelet coefficient fusion method in RUL prognosis of rolling bearings. Reliab Eng Syst Saf, 237: 109337. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>