CLC number: TP391
On-line Access: 2025-07-02
Received: 2024-09-13
Revision Accepted: 2025-01-08
Crosschecked: 2025-07-02
Cited: 0
Clicked: 450
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid/0009-0002-4447-0058
Ignatius IWAN, Bernardo Nugroho YAHYA, Seok-Lyong LEE. Federated model with contrastive learning and adaptive control variates for human activity recognition[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400797 @article{title="Federated model with contrastive learning and adaptive control variates for human activity recognition", %0 Journal Article TY - JOUR
用于人体活动识别的基于对比学习与自适应变量控制的联邦模型韩国外国语大学工业与管理工程系,韩国龙仁市,17035 摘要:随着隐私问题日益凸显,目前亟需一种通信安全的方法,用于在用户活动数据上训练人体活动识别模型。联邦学习作为一种备受关注的技术,可以在保护数据隐私的同时促进服务器与客户端之间的模型训练。然而,传统联邦学习方法通常假设各客户端数据是相互独立且同分布的,这在实际场景中却并不成立。现实场景中的人类活动具有差异性,导致相同行为在不同客户端执行时会产生系统性偏差。这导致了本地模型目标偏离全局模型目标,进而阻碍整体收敛。为此,本文基于对比学习及自适应变量控制,提出一种名为FedCoad的联邦模型来处理人体活动识别中的客户端偏差。模型对比学习将全局模型和本地模型之间的表征差距最小化,有助于全局模型的收敛。在本地模型更新期间,自适应控制变量会根据模型权重和控制变量更新的变化速率对本地模型更新进行惩罚。我们的实验结果表明,FedCoad在人体活动识别基准数据集上的表现优于现有最先进的联邦学习算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bianchi V, Bassoli M, Lombardo G, et al., 2019. IoT wearable sensor and deep learning: an integrated approach for personalized human activity recognition in a smart home environment. IEEE Int Things J, 6(5):8553-8562. ![]() [2]Diao EM, Ding J, Tarokh V, 2021. HeteroFL: computation and communication efficient federated learning for heterogeneous clients. Proc 9th Int Conf on Learning Representations. ![]() [3]Guo CR, Zhang YW, Chen YQ, et al., 2024. Modality consistency-guided contrastive learning for wearable-based human activity recognition. IEEE Int Things J, 11(12):21750-21762. ![]() [4]Guo JL, Li ZT, Liu AF, et al., 2024. REC-Fed: a robust and efficient clustered federated system for dynamic edge networks. IEEE Trans Mob Comput, 23(12):15256-15273. ![]() [5]Hsu TMH, Qi H, Brown M, 2019. Measuring the effects of non-identical data distribution for federated visual classification. https://arxiv.org/abs/1909.06335 ![]() [6]Karimireddy SP, Kale S, Mohri M, et al., 2020. SCAFFOLD: stochastic controlled averaging for federated learning. Proc 37th Int Conf on Machine Learning, p.5132-5143. ![]() [7]Kwapisz JR, Weiss GM, Moore SA, 2011. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor Newsl, 12(2):74-82. ![]() [8]Li CL, Niu D, Jiang B, et al., 2021. Meta-HAR: federated representation learning for human activity recognition. Proc Web Conf, p.912-922. ![]() [9]Li QB, He BS, Song D, 2021. Model-contrastive federated learning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.10713-10722. ![]() [10]Li T, Sahu AK, Zaheer M, et al., 2020. Federated optimization in heterogeneous networks. Proc 3rd Conf on Machine Learning and Systems. ![]() [11]Li X, Huang KX, Yang WH, et al., 2020. On the convergence of FedAvg on non-IID data. Proc 8th Int Conf on Learning Representations. ![]() [12]Malekzadeh M, Clegg RG, Cavallaro A, et al., 2019. Mobile sensor data anonymization. Proc Int Conf on Internet of Things Design and Implementation, p.49-58. ![]() [13]McMahan HB, Moore E, Daniel R, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf on Artificial Intelligence and Statistics, p.1273-1282. ![]() [14]Mrozek D, Koczur A, Małysiak-Mrozek B, 2020. Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge. Inform Sci, 537:132-147. ![]() [15]Presotto R, Civitarese G, Bettini C, 2022. FedCLAR: federated clustering for personalized sensor-based human activity recognition. Proc IEEE Int Conf on Pervasive Computing and Communications, p.227-236. ![]() [16]Sozinov K, Vlassov V, Girdzijauskas S, 2018. Human activity recognition using federated learning. Proc IEEE Int Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications, p.1103-1111. ![]() [17]Stisen A, Blunck H, Bhattacharya S, et al., 2015. Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. Proc 13th ACM Conf on Embedded Networked Sensor Systems, p.127-140. ![]() [18]Tang CI, Perez-Pozuelo I, Spathis D, et al., 2021. SelfHAR: improving human activity recognition through self-training with unlabeled data. Proc ACM Interact Mob Wear Ubiq Technol, 5(1):36. ![]() [19]Wang HY, Yurochkin M, Sun YK, et al., 2020. Federated learning with matched averaging. Proc 8th Int Conf on Learning Representations. ![]() [20]Wu JH, Sun J, Song J, et al., 2022. Health assessment method based on multi-sign information fusion of body area network. Inform Sci, 618:136-149. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>