CLC number: TP39
On-line Access: 2025-07-28
Received: 2024-10-20
Revision Accepted: 2025-03-25
Crosschecked: 2025-07-30
Cited: 0
Clicked: 897
Citations: Bibtex RefMan EndNote GB/T7714
Yalu WANG, Jie LI, Zhijie HAN, Pu CHENG, Roshan KUMAR. FedSTGCN: a novel federated spatiotemporal graph learning-based network intrusion detection method for the Internet of Things[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400932 @article{title="FedSTGCN: a novel federated spatiotemporal graph learning-based network intrusion detection method for the Internet of Things", %0 Journal Article TY - JOUR
FedSTGCN:一种基于联邦时空图学习的物联网网络入侵检测新方法1河南大学计算机与信息工程学院,中国开封市,475004 2郑州航空工业管理学院计算机学院,中国郑州市,450046 3河南大学软件学院,中国开封市,475004 4河南大学迈阿密学院,中国开封市,475004 摘要:物联网(IoT)设备的快速增长和其复杂性的增加使得网络入侵检测成为一个关键挑战,尤其是在以数据隐私为主要关注点的边缘计算环境中。基于机器学习的入侵检测技术可以增强物联网网络的安全性,但通常需要集中式的网络数据,这带来数据隐私和安全方面的重大风险。近年来,尽管出现了基于联邦学习的网络入侵检测方法以应对隐私问题,但这些方法尚未充分利用图神经网络(GNN)在入侵检测中的优势。为解决这一问题,提出一种联邦时空图卷积网络框架(FedSTGCN),该框架结合了时空图神经网络(STGNN)和联邦学习的能力。该框架支持在分布式物联网设备间协同训练模型,无需共享原始数据,从而在保护数据隐私的同时提高网络入侵检测的准确性。在两个广泛使用的物联网入侵检测数据集上进行了大量实验,以评估所提方法的有效性。实验结果表明,FedSTGCN在二分类和多分类任务中均优于其他方法,在二分类任务中准确率超过97%,在多分类任务中加权F1分数超过92%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aburomman AA, Reaz MBI, 2016. A novel SVM-kNN-PSO ensemble method for intrusion detection system. Appl Soft Comput, 38:360-372. ![]() [2]Aljuhani A, Kumar P, Kumar R, et al., 2023. Fog intelligence for secure smart villages: architecture and future challenges. IEEE Consum Electron Mag, 12(5):12-21. ![]() [3]Almogren AS, 2020. Intrusion detection in Edge-of-Things computing. J Parall Distrib Comput, 137:259-265. ![]() [4]Altaf T, Wang X, Ni W, et al., 2023. A new concatenated multigraph neural network for IoT intrusion detection. Int Things, 22:100818. ![]() [5]Caville E, Lo WW, Layeghy S, et al., 2022. Anomal-E: a self-supervised network intrusion detection system based on graph neural networks. Knowl-Based Syst, 258:110030. ![]() [6]Chatterjee P, Das D, Rawat DB, 2024. Federated learning empowered recommendation model for financial consumer services. IEEE Trans Consum Electron, 70(1):2508-2516. ![]() [7]Chen Z, Lv N, Liu PF, et al., 2020. Intrusion detection for wireless edge networks based on federated learning. IEEE Access, 8:217463-217472. ![]() [8]Dina AS, Siddique AB, Manivannan D, 2023. A deep learning approach for intrusion detection in Internet of Things using focal loss function. Int Things, 22:100699. ![]() [9]Ghasempour A, 2019. Internet of Things in smart grid: architecture, applications, services, key technologies, and challenges. Inventions, 4(1):22. ![]() [10]Hu XY, Gao WJ, Cheng G, et al., 2023. Toward early and accurate network intrusion detection using graph embedding. IEEE Trans Inform Forens Secur, 18:5817-5831. ![]() [11]Huang XT, Liu J, Lai YX, et al., 2023. EEFED: personalized federated learning of execution & evaluation dual network for CPS intrusion detection. IEEE Trans Inform Forens Secur, 18:41-56. ![]() [12]Khan NW, Alshehri MS, Khan MA, et al., 2023. A hybrid deep learning-based intrusion detection system for IoT networks. Math Biosci Eng, 20(8):13491-13520. ![]() [13]Kipf TN, Welling M, 2017. Semi-supervised classification with graph convolutional networks. 5th Int Conf on Learning Representations, p.1-14. ![]() [14]Koroniotis N, Moustafa N, Sitnikova E, et al., 2019. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Fut Gener Comput Syst, 100:779-796. ![]() [15]Lei RZ, Wang PH, Zhao JZ, et al., 2023. Federated learning over coupled graphs. IEEE Trans Parall Distrib Syst, 34(4):1159-1172. ![]() [16]Li BB, Wu YH, Song JR, et al., 2021. DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans Ind Inform, 17(8):5615-5624. ![]() [17]Li XM, Zhang D, Zheng Y, et al., 2023. Evolutionary computation-based machine learning for smart city high-dimensional big data analytics. Appl Soft Comput, 133:109955. ![]() [18]Lim WYB, Luong NC, Hoang DT, et al., 2020. Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun Surv Tuto, 22(3):2031-2063. ![]() [19]Lo WW, Layeghy S, Sarhan M, et al., 2022. E-GraphSAGE: a graph neural network based intrusion detection system for IoT. IEEE/IFIP Network Operations and Management Symp, p.1-9. ![]() [20]Ma ZC, Liu L, Meng WZ, et al., 2023. ADCL: toward an adaptive network intrusion detection system using collaborative learning in IoT networks. IEEE Int Things J, 10(14):12521-12536. ![]() [21]Mansour Bahar AA, Ferrahi KS, Messai ML, et al., 2024. FedHE-Graph: federated learning with hybrid encryption on graph neural networks for advanced persistent threat detection. Proc 19th Int Conf on Availability, Reliability and Security, Article 119. ![]() [22]Mao QH, Lin X, Xu WC, et al., 2025. FeCoGraph: label-aware federated graph contrastive learning for few-shot network intrusion detection. IEEE Trans Inform Forens Secur, 20:2266-2280. ![]() [23]McMahan B, Moore E, Ramage D, et al., 2017. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf on Artificial Intelligence and Statistics, p.1273-1282. ![]() [24]Moustafa N, 2021. A new distributed architecture for evaluating AI-based security systems at the edge: network TON_IoT datasets. Sustain Cities Soc, 72:102994. ![]() [25]Nguyen DC, Ding M, Pathirana PN, et al., 2021. Federated learning for Internet of Things: a comprehensive survey. IEEE Commun Surv Tutor, 23(3):1622-1658. ![]() [26]Nguyen DC, Pham QV, Pathirana PN, et al., 2022. Federated learning for smart healthcare: a survey. ACM Comput Surv, 55(3):60. ![]() [27]Nitish A, Hanumanthappa J, Shiva Prakash SP, et al., 2023. On-device context-aware misuse detection framework for heterogeneous IoT edge. Appl Intell, 53(12):14792-14818. ![]() [28]Nuaimi M, Fourati LC, Hamed BB, 2023. Intelligent approaches toward intrusion detection systems for Industrial Internet of Things: a systematic comprehensive review. J Netw Comput Appl, 215:103637. ![]() [29]Sangkatsanee P, Wattanapongsakorn N, Charnsripinyo C, 2011. Practical real-time intrusion detection using machine learning approaches. Comput Commun, 34(18):2227-2235. ![]() [30]Sarhan M, Layeghy S, Portmann M, 2022. Towards a standard feature set for network intrusion detection system datasets. Mob Netw Appl, 27(1):357-370. ![]() [31]Veličković P, Cucurull G, Casanova A, et al., 2018. Graph attention networks. 6th Int Conf on Learning Representations, p.1-12. ![]() [32]Wang YL, Li J, Zhao W, et al., 2023. N-STGAT: spatio-temporal graph neural network based network intrusion detection for near-Earth remote sensing. Remote Sens, 15(14):3611. ![]() [33]Wu JP, Qiu GQ, Wu CM, et al., 2024. Federated learning for network attack detection using attention-based graph neural networks. Sci Rep, 14(1):19088. ![]() [34]Yang Q, Liu Y, Chen TJ, et al., 2019. Federated machine learning: concept and applications. ACM Trans Intell Syst Technol, 10(2):12. ![]() [35]Zeng ZR, Peng W, Zeng DT, 2022. Improving the stability of intrusion detection with causal deep learning. IEEE Trans Netw Serv Manag, 19(4):4750-4763. ![]() [36]Zhou XK, Liang W, Li WM, et al., 2022. Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system. IEEE Int Things J, 9(12):9310-9319. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>