CLC number: TP18
On-line Access: 2025-07-28
Received: 2024-11-04
Revision Accepted: 2024-12-09
Crosschecked: 2025-07-30
Cited: 0
Clicked: 370
Yansong CAO, Yutong WANG, Jing YANG, Yonglin TIAN, Jiangong WANG, Fei-Yue WANG. AOI-OPEN: federated operation and control for DAO-based trustworthy and intelligent AOI ecology[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400975 @article{title="AOI-OPEN: federated operation and control for DAO-based trustworthy and intelligent AOI ecology", %0 Journal Article TY - JOUR
AOI-OPEN:基于去中心化自治组织的可信智能自动光学检测生态的联邦操作与控制1澳门科技大学创新工程学院,中国澳门市,999078 2中国科学院自动化研究所,中国北京市,100190 摘要:在智能自动光学检测(AOI)系统中,数据孤岛现象普遍存在,限制了数据资源的充分利用并阻碍了AOI系统的潜力发挥。建立一个涉及软件提供商、硬件制造商和工厂的协作生态系统,为形成闭环的数据流动并实现数据资源的最优化利用提供了积极的解决方案。然而,隐私问题、权利侵犯和来自其他参与者的威胁阻碍了高效有为社区的构建。本文提出创新的框架AOI-OPEN,首先利用去中心化自治组织(DAO)建立可信的AOI生态来聚集相关实体。接着,提出平行数据方法,用于从小规模真实数据生成大规模虚拟样本,以供AOI系统使用。最后,采用联邦学习技术,利用多个实体之间分布的数据资源,并以隐私安全的方式构建大模型。在缺陷分类任务上的实验结果显示,AOI-OPEN在保护隐私的同时,极大地加强了分布式数据资源的利用,促进了检测模型准确性的提升。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bommasani R, Hudson DA, Adeli E, et al., 2021. On the opportunities and risks of foundation models. https://arxiv.org/abs/2108.07258 ![]() [2]Cubero S, Aleixos N, Moltó E, et al., 2011. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc Technol, 4(4):487-504. ![]() [3]Defard T, Setkov A, Loesch A, et al., 2021. PaDiM: a patch distribution modeling framework for anomaly detection and localization. Int Conf on Pattern Recognition, p.475-489. ![]() [4]Dosovitskiy A, Beyer L, Kolesnikov A, et al., 2021. An image is worth 16×16 words: Transformers for image recognition at scale. Proc 9th Int Conf on Learning Representations. ![]() [5]Dwork C, Roth A, 2014. The algorithmic foundations of differential privacy. Found Trends Theor Comput Sci, 9(3-4):211-407. ![]() [6]El Saddik A, 2018. Digital twins: the convergence of multimedia technologies. IEEE Multim, 25(2):87-92. ![]() [7]Goldberg M, Schär F, 2023. Metaverse governance: an empirical analysis of voting within decentralized autonomous organizations. J Bus Res, 160: 113764. ![]() [8]Gou JP, Yu BS, Maybank SJ, et al., 2021. Knowledge distillation: a survey. Int J Comput Vis, 129(6):1789-1819. ![]() [9]Kim S, Kim W, Noh YK, et al., 2017. Transfer learning for automated optical inspection. Proc Int Joint Conf on Neural Networks, p.2517-2524. ![]() [10]Kingma DP, Welling M, 2013. Auto-encoding variational Bayes. https://arxiv.org/abs/1312.6114 ![]() [11]Li JJ, Qin R, Olaverri-Monreal C, et al., 2023. Logistics 5.0: from intelligent networks to sustainable ecosystems. IEEE Trans Intell Veh, 8(7):3771-3774. ![]() [12]Li T, Sahu AK, Talwalkar A, et al., 2020. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag, 37(3):50-60. ![]() [13]Li YT, Guo JI, 2018. A VGG-16 based faster RCNN model for PCB error inspection in industrial AOI applications. Proc IEEE Int Conf on Consumer Electronics-Taiwan, p.1-2. ![]() [14]Li ZY, Yang Q, 2011. System design for PCB defects detection based on AOI technology. Proc 4th Int Congress on Image Signal Processing, p.1988-1991. ![]() [15]Liao HC, Lim ZY, Hu YX, et al., 2018. Guidelines of automated optical inspection (AOI) system development. Proc IEEE 3rd Int Conf on Signal Image Processing, p.362-366. ![]() [16]Liu X, Wang X, Zhang WS, et al., 2017. Parallel data: from big data to data intelligence. Patt Recogn Artif Intell, 30(8):673-681 (in Chinese). ![]() [17]Lu RS, Wu A, Zhang TD, et al., 2018. Review on automated optical (visual) inspection and its applications in defect detection. Acta Opt Sin, 38(8): 0815002. ![]() [18]Miao QH, Lv YS, Huang M, et al., 2023. Parallel learning: overview and perspective for computational learning across Syn2Real and Sim2Real. IEEE/CAA J Autom Sin, 10(3):603-631. ![]() [19]Monrat AA, Schelén O, Andersson K, 2019. A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access, 7:117134-117151. ![]() [20]Ouyang LW, Wang FY, Tian YL, et al., 2023. Artificial identification: a novel privacy framework for federated learning based on blockchain. IEEE Trans Comput Soc Syst, 10(6):3576-3585. ![]() [21]Pan SJ, Yang Q, 2010. A survey on transfer learning. IEEE Trans Knowl Data Eng, 22(10):1345-1359. ![]() [22]Reed JM, Hutchinson S, 1996. Image fusion and subpixel parameter estimation for automated optical inspection of electronic components. IEEE Trans Ind Electron, 43(3):346-354. ![]() [23]Tian YL, Wang JG, Wang YT, et al., 2022. Federated vehicular Transformers and their federations: privacy-preserving computing and cooperation for autonomous driving. IEEE Trans Intell Veh, 7(3):456-465. ![]() [24]Touvron H, Cord M, Douze M, et al., 2021. Training data-efficient image Transformers & distillation through attention. Proc 38th Int Conf on Machine Learning, p.10347-10357. ![]() [25]Vepakomma P, Gupta O, Swedish T, et al., 2018. Split learning for health: distributed deep learning without sharing raw patient data. https://arxiv.org/abs/1812.00564 ![]() [26]Wang FY, Qin R, Chen YZ, et al., 2021a. Federated ecology: steps toward confederated intelligence. IEEE Trans Comput Soc Syst, 8(2):271-278. ![]() [27]Wang FY, Zhang WS, Tian YL, et al., 2021b. Federated data: toward new generation of credible and trustable artificial intelligence. IEEE Trans Comput Soc Syst, 8(3):538-545. ![]() [28]Wang FY, Zhu J, Qin R, et al., 2021c. Federated control: toward information security and rights protection. IEEE Trans Comput Soc Syst, 8(4):793-798. ![]() [29]Wang KF, Gou C, Zheng NN, et al., 2017. Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives. Artif Intell Rev, 48(3):299-329. ![]() [30]Wang L, Yoon KJ, 2022. Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans Patt Anal Mach Intell, 44(6):3048-3068. ![]() [31]Wang S, Yuan Y, Wang X, et al., 2018. An overview of smart contract: architecture, applications, and future trends. Proc IEEE Intelligent Vehicles Symp, p.108-113. ![]() [32]Wang S, Ding WW, Li JJ, et al., 2019. Decentralized autonomous organizations: concept, model, and applications. IEEE Trans Comput Soc Syst, 6(5):870-878. ![]() [33]Wang WC, Chen SL, Chen LB, et al., 2017. A machine vision based automatic optical inspection system for measuring drilling quality of printed circuit boards. IEEE Access, 5:10817-10833. ![]() [34]Wang Y, Xiong W, Cheng JR, et al., 2015. Vision based hole crack detection. Proc IEEE 10th Conf on Industrial Electronics and Applications, p.1932-1936. ![]() [35]Wang YT, Tian YL, Wang JG, et al., 2022. Integrated inspection of QoM, QoP, and QoS for AOI industries in metaverses. IEEE/CAA J Autom Sin, 9(12):2071-2078. ![]() [36]Wang ZH, Li HJ, Li JG, et al., 2024. Federated learning on non-IID and long-tailed data via dual-decoupling. Front Inform Technol Electron Eng, 25(5):728-741. ![]() [37]Weiss K, Khoshgoftaar TM, Wang DD, 2016. A survey of transfer learning. J Big Data, 3(1):9. ![]() [38]Wu FP, Zhang XM, Kuan YC, et al., 2008. An AOI algorithm for PCB based on feature extraction. Proc 7th World Congress on Intelligent Control and Automation, p.240-247. ![]() [39]Yan K, Shu NN, Wu T, et al., 2024. A survey of energy-efficient strategies for federated learning in mobile edge computing. Front Inform Technol Electron Eng, 25(5):645-663. ![]() [40]Yang Q, Liu Y, Cheng Y, et al., 2019. Federated Learning. Springer, Cham, Germany, p.1-207. ![]() [41]Yang YT, Pan LH, Ma JX, et al., 2020. A high-performance deep learning algorithm for the automated optical inspection of laser welding. Appl Sci, 10(3):933. ![]() [42]Yao SY, Yu JR, Yu Y, et al., 2023. Towards integrated traffic control with operating decentralized autonomous organization. Proc IEEE 26th Int Conf on Intelligent Transportation Systems, p.6126-6131. ![]() [43]Yu HF, Bai XP, 2024. Identity-based searchable attribute signcryption in lattice for a blockchain-based medical system. Front Inform Technol Electron Eng, 25(3):461-471. ![]() [44]Yuan K, Guo SP, Liu ZW, et al., 2021. Incorporating convolution designs into visual Transformers. Proc IEEE/CVF Int Conf on Computer Vision, p.579-588. ![]() [45]Yuan L, Chen YP, Wang T, et al., 2021. Tokens-to-token ViT: training vision Transformers from scratch on ImageNet. Proc IEEE/CVF Int Conf on Computer Vision, p.558-567. ![]() [46]Zhang BY, Chen T, Wang X, et al., 2024. Decoding activist public opinion in decentralized self-organized protests using LLM. IEEE Trans Comput Soc Syst, 11(4):5525-5535. ![]() [47]Zhang R, Xue R, Liu L, 2020. Security and privacy on blockchain. ACM Comput Surv, 52(3):51. ![]() [48]Zhang WS, Sun G, Xu L, et al., 2022. A trustworthy safety inspection framework using performance-security balanced blockchain. IEEE Int Things J, 9(11):8178-8190. ![]() [49]Zhang WS, Chen X, He K, et al., 2023. Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting. Dig Commun Netw, 9(5):1221-1229. ![]() [50]Zhang WS, Wang YQ, Chen LM, et al., 2024. Dynamic circular network-based federated dual-view learning for multivariate time series anomaly detection. Bus Inform Syst Eng, 66(1):19-42. ![]() [51]Zhuang FZ, Qi ZY, Duan KY, et al., 2021. A comprehensive survey on transfer learning. Proc IEEE, 109(1):43-76. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>