CLC number: TQ534
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-09-15
Cited: 0
Clicked: 5456
Citations: Bibtex RefMan EndNote GB/T7714
Kun-zan Qiu, Ye Yang, Zhuo You, Zhi-hua Wang, Zhi-jun Zhou, Jun-hu Zhou, Ke-fa Cen. Effect of dilution of fuel in CO2 on the conversion of NH3 to NOx during oxy-fuel combustion[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1300231 @article{title="Effect of dilution of fuel in CO2 on the conversion of NH3 to NOx during oxy-fuel combustion", %0 Journal Article TY - JOUR
Abstract: This paper reports on a computational study of the influence of CO2 dilution and reaction on the formation and reduction of NO generated from CH4 doped with NH3 (to simulate fuel-bound N).The area of study is of great importance to the combustion and energy community.
模拟富氧燃烧过程中燃料在CO2中稀释对NH3向NOx转化影响的研究创新点:提出一种无分支链式反应解释说明CO2在还原性粒子环境中对反应的影响。 方法:通过Chemkin Pro中塞流式反应器模块对混入NH3的CH4燃料在O2/CO2气氛中反应进行数值模拟,同时改变CO2的稀释程度来探索CO2浓度对NOx生成的影响,并比较不同反应机理下的模拟结果,探索此环境中NOx的生成机理(表1)。 结论:1. 无支链反应机理可用于解释CO2在还原性粒子环境中对NOx生成与还原的影响;2. 随着CO2浓度的升高,无支链反应和支链反应相互竞争H,进而抑制NO的生成;3. 在对NH3转化效率的影响方面,CO2浓度增加引发的无支链反应和支链反应对H的竞争,在富燃料条件下从促进转化变为抑制转化,在化学当量和贫燃料条件下从无影响变为抑制转化。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahn, J., Kim, H.J., Choi, K.S., 2009. Combustion characteristics of oxy-fuel burners for CO2 capturing boilers. Journal of Thermal Science and Technology, 4(3):408-413. ![]() [2]Bhuiyan, A.A., Naser, J., 2015a. Numerical modelling of oxy fuel combustion, the effect of radiative and convective heat transfer and burnout. Fuel, 139:268-284. ![]() [3]Bhuiyan, A.A., Naser, J., 2015b. Computational modelling of co-firing of biomass with coal under oxy-fuel condition in a small scale furnace. Fuel, 143:455-466. ![]() [4]Boushaki, T., Mergheni, M.A., Sautet, J.C., et al., 2008. Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner. Experimental Thermal and Fluid Science, 32(7):1363-1370. ![]() [5]Boushaki, T., Sautet, J.C., Labegorre, B., 2009. Control of flames by tangential jet actuators in oxy-fuel burners. Combustion and Flame, 156(11):2043-2055. ![]() [6]Buhre, B.J.P., Elliott, L.K., Sheng, C.D., et al., 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31(4):283-307. ![]() [7]Cao, H., Sun, S., Liu, Y., et al., 2010. Computational fluid dynamics modeling of NOx reduction mechanism in oxy-fuel combustion. Energy & Fuels, 24(1):131-135. ![]() [8]Chui, E.H., Douglas, M.A., Tan, Y.W., 2003. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel, 82(10):1201-1210. ![]() [9]Chui, E.H., Majeski, A.J., Douglas, M.A., et al., 2004. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts. Energy, 29(9-10):1285-1296. ![]() [10]Feng, B., Ando, T., Okazaki, K., 1998. NO destruction and regeneration in CO2 enriched CH4 flame. JSME International Journal Series B-Fluids and Thermal Engineering, 41(4):959-965. ![]() [11]Glarborg, P., Bentzen, L.L.B., 2008. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy & Fuels, 22(1):291-296. ![]() [12]Habib, M.A., Badr, H.M., Ahmed, S.F., et al., 2011. A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. International Journal of Energy Research, 35(9):741-764. ![]() [13]Hecht, E.S., Shaddix, C.R., Molina, A., et al., 2011. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proceedings of the Combustion Institute, 33(2):1699-1706. ![]() [14]Kiga, T., Takano, S., Kimura, N., et al., 1997. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion. Energy Conversion and Management, 38:S129-S134. ![]() [15]Mendiara, T., Glarborg, P., 2009. Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame, 156(10):1937-1949. ![]() [16]Normann, F., Andersson, K., Leckner, B., et al., 2008. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel, 87(17-18):3579-3585. ![]() [17]Normann, F., Andersson, K., Leckner, B., et al., 2009. Utilization of reburn reactions for NOx control in oxy-fuel combustion. AIChE Annual Meeting, Nashville, USA. ![]() [18]Wang, C., Jia, L., Tan, Y., et al., 2008. Carbonation of fly ash in oxy-fuel CFB combustion. Fuel, 87(7):1108-1114. ![]() [19]Watanabe, H., Yamamoto, J.I., Okazaki, K., 2011. NOx formation and reduction mechanisms in staged O2/CO2 combustion. Combustion and Flame, 158(7):1255-1263. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>