Full Text:  <4517>

Summary:  <2830>

CLC number: U270.1+1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-26

Cited: 9

Clicked: 16627

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Study on the safety of operating high-speed railway vehicles subjected to crosswinds


Author(s):  Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin

Affiliation(s):  . State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Corresponding email(s):  xsjin@home.swjtu.edu.cn

Key Words:  High-speed railway, High-speed train, Crosswinds, Safety boundary, Derailment


Share this article to: More <<< Previous Paper|Next Paper >>>

Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1400062

@article{title="Study on the safety of operating high-speed railway vehicles subjected to crosswinds",
author="Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A1400062"
}

%0 Journal Article
%T Study on the safety of operating high-speed railway vehicles subjected to crosswinds
%A Xin-biao Xiao
%A Liang Ling
%A Jia-yang Xiong
%A Li Zhou
%A Xue-song Jin
%J Journal of Zhejiang University SCIENCE A
%P 694-710
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A1400062"

TY - JOUR
T1 - Study on the safety of operating high-speed railway vehicles subjected to crosswinds
A1 - Xin-biao Xiao
A1 - Liang Ling
A1 - Jia-yang Xiong
A1 - Li Zhou
A1 - Xue-song Jin
J0 - Journal of Zhejiang University Science A
SP - 694
EP - 710
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A1400062"


Abstract: 
A coupled vehicle-track dynamic model is put forward for use in investigating the safety effects of crosswinds on the operation of a high-speed railway vehicle. In this model, the vehicle is modeled as a nonlinear multi-body system, and the ballasted track is modeled as a three-layer discrete elastic support system. The steady aerodynamic forces caused by crosswinds are modeled as ramp-shaped external forces being exerted on the vehicle body. This model was used in a numerical analysis of the dynamic response and dynamic derailment mechanisms of high-speed vehicles subjected to strong crosswinds. The effects of the crosswind speeds, crosswind attack angle, and vehicle speed on the operational safety of the vehicle were examined. The operational safety boundaries of a high-speed vehicle subjected to crosswinds were determined. The numerical results obtained indicate that crosswinds at attack angles of 75° to 90° with respect to the forward direction of the vehicle have a great influence on the safety of operating high-speed railway vehicles. The wheelset unloading limit, which determines the position of the warning boundary dividing the safe operating area and the warning area, is the most conservative, i.e., the safest, criterion to use in assessing the high-speed operational safety of vehicles in crosswinds.

高速铁道车辆风致安全性研究

研究目的:随着世界高速铁路网的不断扩张,高速列车的风致安全性成为高速铁路系统中的关键科学问题之一。本文利用车辆-轨道耦合动力学理论分析方法,确定强横风作用下高速铁道车辆的安全运行区域,为强风地带高速列车的安全控制提供依据。
创新要点:首次提出了考虑多种影响因素和脱轨评价指标的高速列车脱轨安全域分析方法,并运用到了高速铁道车辆风致安全性研究中。
研究方法:基于车辆-轨道耦合动态响应及多种安全性评价指标得到横风作用下高速铁道车辆的安全运行区域和脱轨区域。
重要结论:铁道车辆安全性评价指标中,轮重减载率对横风激励最为敏感,其确定了强风作用下高速车辆安全运行区域的边界。
高速铁路;高速列车;横风;安全边界;脱轨

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Baker,C, Calleja,F, Jones,J, 2004, Measurements of the cross wind forces on trains  Journal of Wind Engineering and Industrial Aerodynamics, 92(7-8):547-563.


[2] Baker,C, Cheli,F, Orellano,A, 2009, Cross wind effects on road and rail vehicles  Vehicle System Dynamics, 47(8):983-1022.


[3] Carrarini,A, 2006, Reliability Based Analysis of the Crosswind Stability of Railway Vehicles. PhD Thesis,Berlin Institute of Technology,Berlin, Germany.

[4] 2010, Railway applications aerodynamics-part 6: requirements and test procedures for cross wind assessment  EN 14067-6:2010, ():-.

[5] Cheli,F, Belforte,P, Melzi,S, 2006, Numerical-experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles  Vehicle System Dynamics, 44(sup1):791-804.


[6] Cheli,F, Ripamonti,F, Rocchi,D, 2010, Aerodynamic behaviour investigation of the new EMUV250 train to cross wind using wind tunnel tests and CFD analysis  Journal of Wind Engineering and Industrial Aerodynamics, 98(4-5):189-201.


[7] Chen,G, Zhai,W.M, 2004, A new wheel/rail spatially dynamic coupling model and its verification  Vehicle System Dynamics, 41(4):301-322.


[8] Diedrichs,B, 2005, Computational Methods for Crosswind Stability of Railway Trains: A Literature Survey. Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology,Stockholm, Sweden.

[9] Evans,A.W, 2011, Fatal train accidents on Europes railways: 19802009  Accident Analysis & Prevention, 43(1):391-401.


[10] Fujii,T, Maeda,T, Ishida,H, 1999, Wind induced accidents of train vehicles and their measures in Japan  Quarterly Report of RTRI, 40(1):50-55.


[11] Gawthorpe,R.G, 1994, Wind effects on ground transportation  Journal of Wind Engineering and Industrial Aerodynamics, 52():73-92.


[12] Jin,X.S, Xiao,X.B, Ling,L, 2013, Study on safety boundary for high-speed trains running in severe environments  International Journal of Rail Transportation, 1(1-2):87-108.


[13] Kalker,J.J, 1967, On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction. PhD Thesis,Delft University,the Netherlands.

[14] Knothe,K, Grassie,S.L, 1993, Modeling of railway track and vehicle/track interaction at high frequencies  Vehicle System Dynamics, 22(3-4):209-262.


[15] Ling,L, Xiao,X.B, Jin,X.S, 2012, Study on derailment mechanism and safety operation area of high speed trains under earthquake  Journal of Computational and Nonlinear Dynamics, 7(4):041001-.


[16] Nadal,M.J, 1896, Theorie de stabilite des Locomotives, part 2, Mouvement de Lacet  Annales des Mines 10, ():232-.

[17] 2008, Technical specification for interoperability of high speed rolling stock  TSI/HS-RST-L64-7/3/2008:2008, ():-.

[18] Orellano,A, Schober,M, 2003, On side-wind stability of high-speed trains  Vehicle System Dynamics, 40(sup):143-160.

[19] 2000, Resistance of railway vehicles to roll-over in gales  GM/RT2142:2000, ():-.

[20] Shen,Z.Y, Hedrick,J.K, Elkins,J.A, 1983, A comparison of alternative creep-force models for rail vehicle dynamic analysis  Vehicle System Dynamics, 12(1-3):79-83.


[21] Silla,A, Kallberg,V.P, 2012, The development of railway safety in Finland  Accident Analysis & Prevention, 45():737-744.


[22] Weinstock,H, 1984, Wheel climb derailment criteria for evaluation of rail vehicle safety  , Proceedings of the ASME Winter Annual Meeting, New York, USA, p. 1-7.

[23] Wilson,N, Fries,R, Witte,M, 2011, Assessment of safety against derailment using simulations and vehicle acceptance tests: a worldwide comparison of state-of-the-art assessment methods  Vehicle System Dynamics, 49(7):1113-1157.


[24] Wu,H, Wilson,N, 2006, Handbook of Railway Vehicle Dynamics. Taylor & Francis,London, UK.

[25] Xiao,X.B, Jin,X.S, Deng,Y.Q, 2008, Effect of curved track support failure on vehicle derailment  Vehicle System Dynamics, 46(11):1029-1059.


[26] Xiao,X.B, Jin,X.S, Wen,Z.F, 2011, Effect of tangent track buckle on vehicle derailment  Multibody System Dynamics, 25(1):1-41.


[27] 2007, Train overturned by strong wind in NW China  China Daily, Feb. 28, ():-.

[28] Xu,Y.L, Ding,Q.S, 2006, Interaction of railway vehicles with track in cross-winds  Journal of Fluids and Structures, 22(3):295-314.


[29] Yokose,K, 1966, A theory of the derailment of a wheelset  Quarterly Report of RTRI, 7(3):30-34.

[30] Zhai,W.M, Cai,C.B, Guo,S.Z, 1996, Coupling model of vertical and lateral vehicle/track interactions  Vehicle System Dynamics, 26(1):61-79.



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE