
CLC number: TG146.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-20
Cited: 2
Clicked: 5947
Citations: Bibtex RefMan EndNote GB/T7714
Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1400285 @article{title="Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys", %0 Journal Article TY - JOUR
Abstract: This is a very interesting contribution to the field of highly strained electrical conductors based on copper composites. Specifically the approach to study the less expensive combination of Cu and Fe is of some relevance in this field. The work has been well described and the results are of interest to the community in this field. Thus I wish to applaud the authors for a nice piece of work.
冷拉拔Cu-2.5% Fe-0.2% Cr和Cu-6% Fe合金的显微组织与性能方法:1. 通过热处理在Cu-2.5% Fe-0.2% Cr合金中得到纳米级的Fe析出相,在Cu-6% Fe中得到微米级的Fe析出相;2. 通过冷拉拔手段使铜合金从棒状逐步变形成线材;3. 使用光学显微镜、扫描电镜和透射电镜观察微观组织,并用万能电子试验机测量抗拉强度,用标准四点法测量电阻率。 结论:1. 通过热处理在Cu-6% Fe合金中得到尺寸约5 μm的初生Fe颗粒,在Cu-2.5% Fe-0.2% Cr合金中得到尺寸约50 nm的次生Fe颗粒; 2. 初生Fe颗粒在冷拉拔过程中转变成丝带状纤维,Cu/Fe相界面密度随变形量增加而增加,从而使Cu-6% Fe合金的强度和电阻率都随之增大;3. 次生Fe颗粒即使在η=6的时候也难以变形,保持着球形的形貌,同时高密度的位错环绕着Fe颗粒;Cu-2.5% Fe-0.2% Cr合金的强度随变形量增加而增大,遵循Orowan强化机制;Cu-2.5% Fe-0.2% Cr合金的电阻率几乎保持不变,因为Cu/Fe相界面密度在冷拉拔过程中几乎不变;4. 尺寸效应和Fe析出颗粒与Cu基体的非共格界面对Fe析出颗粒在冷拉拔过程中不变形起到重要作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Badinier, G., Sinclair, C.W., Allain, S., et al., 2014. The Bauschinger effect in drawn and annealed nanocomposite Cu-Nb wires. Materials Science and Engineering: A, 597:10-19. ![]() [2]Bevk, J., Harbison, J.P., Bell, J.L., 1978. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites. Journal of Applied Physics, 49(12):6031-6038. ![]() [3]Biselli, C., Morris, D.G., 1994. Microstructure and strength of Cu-Fe in-situ composites obtained from prealloyed Cu-Fe powders. Acta Metallurgica et Materialia, 42(1):163-176. ![]() [4]Biselli, C., Morris, D.G., 1996. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Materialia, 44(2):493-504. ![]() [5]Deng, L.P., Han, K., Hartwig, K.T., et al., 2014. Hardness, electrical resistivity, and modeling of in situ Cu-Nb microcomposites. Journal of Alloys and Compounds, 602:331-338. ![]() [6]Dunstan, D.J., Bushby, A.J., 2013. The scaling exponent in the size effect of small scale plastic deformation. International Journal of Plasticity, 40:152-162. ![]() [7]Frommeyer, G., Wassermann, G., 1975. Microstructure and anomalous mechanical properties of in situ-produced silver-copper composite wires. Acta Metallurgica, 23(11):1353-1360. ![]() [8]Han, K., Vasquez, A.A., Xin, Y., et al., 2003. Microstructure and tensile properties of nanostructured Cu-25wt%Ag. Acta Materialia, 51(3):767-780. ![]() [9]Hangen, U., Raabe, D., 1995. Modeling of the yield strength of a heavily wire drawn Cu-20-percent-Nb composite by use of a modified linear rule of mixtures. Acta Metallurgica et Materialia, 43(11):4075-4082. ![]() [10]Heringhaus, F., 1998. Quantitative Analysis of the Influence of the Microstructure on Strength, Resistivity, and Magnetoresistance of Eutectic Silver-copper. PhD Thesis, Institut fur Metallkunde und Metallphysik, RWTH Aachen, Germany; National High Magnetic Field Laboratory Tallahassee, USA. ![]() [11]Hong, S.I., Hill, M.A., 1999. Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites. Materials Science and Engineering: A, 264(1-2):151-158. ![]() [12]Hong, S.I., Song, J.S., 2001. Strength and conductivity of Cu-9Fe-1.2X (X=Ag or Cr) filamentary microcomposite wires. Metallurgical and Materials Transaction A, 32(4):985-991. ![]() [13]Jia, N., Roters, F., Eisenlohr, P., et al., 2013. Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites. Acta Materialia, 61(12):4591-4606. ![]() [14]Karasek, K.R., Bevk, J., 1981. Normal-state resistivity of in situ-formed ultrafine filamentary Cu-Nb composites. Journal of Applied Physics, 52(3):1370-1375. ![]() [15]Legros, M., Elliott, B.R., Rittner, M.N., et al., 2000. Microsample tensile testing of nanocrystalline metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 80(4):1017-1026. ![]() [16]Liu, J.B., Zhang, L., Meng, L., 2011a. Codeformation in Cu-6wt.% Ag nanocomposites. Scripta Materialia, 64(7):665-668. ![]() [17]Liu, J.B., Zhang, L., Yao, D.W., et al., 2011b. Microstructure evolution of Cu/Ag interface in the Cu–6 wt.% Ag filamentary nanocomposite. Acta Materialia, 59(3):1191-1197. ![]() [18]Liu, K.M., Lu, D.P., Zhou, H.T., et al., 2013. Influence of a high magnetic field on the microstructure and properties of a Cu–Fe–Ag in situ composite. Materials Science and Engineering: A, 584:114-120. ![]() [19]Lu, X.P., Yao, D.W., Chen, Y., et al., 2014. Microstructure and hardness of Cu-12% Fe composite at different drawing strains. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(2):149-156. ![]() [20]Mattissen, D., Rabbe, D., Heringhaus, F., 1999. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu–Ag–Nb in situ composite. Acta Materialia, 47(5):1627-1634. ![]() [21]Monzen, R., Kita, K., 2002. Ostwald ripening of spherical Fe particles in Cu-Fe alloys. Philosophical Magazine Letters, 82(7):373-382. ![]() [22]Pantsyrny, V.I., Khlebova, N.E., Sudyev, S.V., et al., 2014. Thermal stability of the high strength high conductivity Cu-Nb, Cu-V, and Cu-Fe nanostructured microcomposite wires. IEEE Transaction of Applied Superconductor, 24(3):0502804. ![]() [23]Raabe, D., Ball, J., Gottstein, G., 1992. Rolling textures of a Cu-20-percent-Nb composite. Scripta Metallurgica et Materialia, 27(2):211-216. ![]() [24]Raabe, D., Heringhaus, F., Hangen, U., et al., 1995a. Investigation of a Cu-20 mass-percent Nb in-situ composite. 1. Fabrication, microstructure and mechanical properties. Zeitschrift Fur Metallkunde, 86:405-415. ![]() [25]Raabe, D., Heringhaus, F., Hangen, U., et al., 1995b. Investigation of a Cu-20 mass-percent Nb in-situ composite. 2. Electromagnetic properties and application. Zeitschrift Fur Metallkunde, 86:416-422. ![]() [26]Raabe, D., Miyake, K., Takahara, H., 2000. Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites. Materials Science and Engineering: A, 291(1-2):186-197. ![]() [27]Raju, K.S., Sarma, V.S., Kauffmann, A., et al., 2013. High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia, 61(1):228-238. ![]() [28]Sinclair, C.W., Embury, J.D., Weatherly, G.C., 1999. Basic aspects of the co-deformation of bcc/fcc materials. Materials Science and Engineering: A, 272(1):90-98. ![]() [29]Sitarama Raju, K., Subramanya Sarma, V., Kauffmann, A., et al., 2013. High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia, 61(1):228-238. ![]() [30]Song, J.S., Hong, S.I., Kim, H.S., 2001. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites. Journal of Materials Processing Technology, 113(1-3):610-616. ![]() [31]Spitzig, W.A., Pelton, A.R., Laabs, F.C., 1987. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta Metallurgica, 35(10):2427-2442. ![]() [32]Tian, Y.Z., Zhang, Z.F., 2009. Microstructures and tensile deformation behavior of Cu–16wt.%Ag binary alloy. Materials Science and Engineering: A, 508(1-2):209-213. ![]() [33]Tian, Y.Z., Wu, S.D., Zhang, Z.F., et al., 2011. Comparison of microstructures and mechanical properties of a Cu–Ag alloy processed using different severe plastic deformation modes. Materials Science and Engineering: A, 528(13-14):4331-4336. ![]() [34]Wang, Y.F., Gao, H.Y., Wang, J., et al., 2014. First-principles calculations of Ag addition on the diffusion mechanisms of Cu-Fe alloys. Solid State Communications, 183:60-63. ![]() [35]Watanabe, D., Watanabe, C., Monzen, R., 2008. Effect of coherency on coarsening of second-phase precipitates in Cu-base alloys. Journal of Materials Science, 43(11):3946-3953. ![]() [36]Wu, Z.W., Chen, Y., Meng, L., 2009. Microstructure and properties of Cu-Fe microcomposites with prior homogenizing treatments. Journal of Alloys and Compounds, 481(1-2):236-240. ![]() [37]Xie, Z., Gao, H., Wang, J., et al., 2011. Effect of homogenization treatment on microstructure and properties for Cu–Fe–Ag in situ composites. Materials Science and Engineering: A, 529:388-392. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>