CLC number: TB33; O343
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-06-12
Cited: 2
Clicked: 6047
Citations: Bibtex RefMan EndNote GB/T7714
Xu Liang, Hai-lei Kou, Guo-hua Liu, Li-zhong Wang, Zhen-yu Wang, Zhi-jun Wu. A semi-analytical state-space approach for 3D transient analysis of functionally graded material cylindrical shells[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1500016 @article{title="A semi-analytical state-space approach for 3D transient analysis of functionally graded material cylindrical shells", %0 Journal Article TY - JOUR
Abstract: The paper addresses the semi-analytical state-space approach for 3D transient analysis of functionally graded material cylindrical shells. Generally, the paper is well written and the technical content is acceptable (although the paper does not show strong originality and innovative idea). The subject matter is interesting because the manuscript gives access to the results of the particular FGM problem.
功能梯度圆柱壳瞬态动力响应的三维半解析状态空间求解方法创新点:提出一种功能梯度圆柱壳的瞬态动力响应半解析求解方法,并可以考虑任意边界条件。本文考虑四种边界条件:固支-固支、固支-简支、固支-自由和简支-简支。 方法:1.提出任意边界条件下功能梯度圆柱壳的瞬态动力响应半解析求解方法;2.采用有限元方法计算成果,验证本方法的正确性;3.将本方法与其他理论方法计算得到的结构固有频率以及文献中试验得到的结构固有频率进行比较;4.研究荷载频率、长径比、内外径比以及功能梯度参数对于结构瞬态动力响应的影响。 结论:1.提出一种功能梯度圆柱壳的瞬态动力响应半解析求解方法;2.与其他方法计算成果对比,验证了本方法的正确性;3.收敛性分析表明,随着长度方向采样点数和径向分层数的增加,计算结果迅速收敛。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abbasnejad, B., Rezazadeh, G., Shabani, R., 2013. Stability analysis of a capacitive FGM micro-beam using modified couple stress theory. Acta Mechanica Solida Sinica, 26(4):427-440. ![]() [2]Akbari Alashti, R., Khorsand, M., 2012. Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled. International Journal of Pressure Vessels and Piping, 96-97:49-67. ![]() [3]Alibeigloo, A., Shakeri, M., 2009. Elasticity solution for static analysis of laminated cylindrical panel using differential quadrature method. Engineering Structures, 31(1):260-267. ![]() [4]Alibeigloo, A., Liew, K.M., 2014. Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity. Composite Structures, 113:23-30. ![]() [5]Bellman, R., Casti, J., 1971. Differential quadrature and long-term integration. Journal of Mathematical Analysis and Applications, 34(2):235-238. ![]() [6]Bert, C.W., Malik, M., 1996. Differential quadrature method in computational mechanics: a review. Applied Mechanics Reviews, 49(1):1-28. ![]() [7]Carrera, E., Soave, M., 2011. Use of functionally graded material layers in a two-layered pressure vessel. Journal of Pressure Vessel Technology, 133(5):051202. ![]() [8]Chen, W.Q., Lv, C.F., Bian, Z.G., 2003. Elasticity solution for free vibration of laminated beams. Composite Structures, 62(1):75-82. ![]() [9]Chen, W.Q., Bian, Z.G., Lv, C.F., et al., 2004. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. International Journal of Solids and Structures, 41(3-4):947-964. ![]() [10]Cohen, A.M., 2007. Numerical Methods for Laplace Transform Inversion. Springer Science & Business Media. ![]() [11]Durbin, F., 1974. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. The Computer Journal, 17(4):371-376. ![]() [12]Hasheminejad, S.M., Rajabi, M., 2008. Scattering and active acoustic control from a submerged piezoelectric-coupled orthotropic hollow cylinder. Journal of Sound and Vibration, 318(1-2):50-73. ![]() [13]Hasheminejad, S.M., Gheshlaghi, B., 2012. Three-dimensional elastodynamic solution for an arbitrary thick FGM rectangular plate resting on a two parameter viscoelastic foundation. Composite Structures, 94(9):2746-2755. ![]() [14]Hosseini-Hashemi, S., Ilkhani, M.R., Fadaee, M., 2012. Identification of the validity range of Donnell and sanders shell theories using an exact vibration analysis of functionally graded thick cylindrical shell panel. Acta Mechanica, 223(5):1101-1118. ![]() [15]Hosseini-Hashemi, S., Ilkhani, M.R., Fadaee, M., 2013. Accurate natural frequencies and critical speeds of a rotating functionally graded moderately thick cylindrical shell. International Journal of Mechanical Sciences, 76:9-20. ![]() [16]Jing, H.S., Tzeng, K.G., 1993. Approximate elasticity solution for laminated anisotropic finite cylinders. AIAA Journal, 31(11):2121-2129. ![]() [17]Khdeir, A.A., Aldraihem, O.J., 2011. Exact analysis for static response of cross ply laminated smart shells. Composite Structures, 94(1):92-101. ![]() [18]Leissa, A.W., 1973. Vibration of shells. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington. ![]() [19]Liang, X., Wang, Z., Wang, L., et al., 2014. Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation. Journal of Sound and Vibration, 333(12):2649-2663. ![]() [20]Liang, X., Wang, Z., Wang, L., et al., 2015a. A semi-analytical method to evaluate the dynamic response of functionally graded plates subjected to underwater shock. Journal of Sound and Vibration, 336:257-274. ![]() [21]Liang, X., Wu, Z., Wang, L., et al., 2015b. Semianalytical three-dimensional solutions for the transient response of functionally graded material rectangular plates. Journal of Engineering Mechanics, 04015027. ![]() [22]Liew, K.M., Zhao, X., Lee, Y.Y., 2012. Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Composites Part B: Engineering, 43(3):1621-1630. ![]() [23]Lü, C.F., Lim, C.W., Xu, F., 2007. Stress analysis of anisotropic thick laminates in cylindrical bending using a semi-analytical approach. Journal of Zhejiang University-SCIENCE A, 8(11):1740-1745. ![]() [24]Miyamoto, Y., Kaysser, W.A., Rabin, B.H., et al., 1999. Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic Publishers, Boston. ![]() [25]Neves, M.A., Ferreira, J.M., Carrera, E., et al., 2013. Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. European Journal of Mechanics -A/Solids, 37:24-34. ![]() [26]Ng, C.W.W., 2014. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(1):1-21. ![]() [27]Santos, H., Mota Soares, C.M., Mota Soares, C.A., et al., 2009. A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials. Composite Structures, 91(4):427-432. ![]() [28]Shadmehri, F., Hoa, S., Hojjati, M., 2014. The effect of displacement field on bending, buckling, and vibration of cross-ply circular cylindrical shells. Mechanics of Advanced Materials and Structures, 21(1):14-22. ![]() [29]Sharma, C.B., 1984. Free vibrations of clamped-free circular cylinders. Thin-Walled Structures, 2(2):175-193. ![]() [30]Shen, H.S., Wang, H., 2013. Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium. Composite Structures, 102:250-260. ![]() [31]Soong, T.V., 1970. A sub divisional method for linear system. Proceedings of the 11th AIAA/ASME Structures, Structural Dynamics and Material Conferences, New York, p.211-223. ![]() [32]Tarn, J.Q., Tseng, W.D., Chang, H.H., 2009. A circular elastic cylinder under its own weight. International Journal of Solids and Structures, 46(14-15):2886-2896. ![]() [33]Torki, M.E., Kazemi, M.T., Reddy, J.N., et al., 2014. Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces. Journal of Sound and Vibration, 333(3):801-817. ![]() [34]Wang, H.M., 2013. An effective approach for transient thermal analysis in a functionally graded hollow cylinder. International Journal of Heat and Mass Transfer, 67:499-505. ![]() [35]Wang, H.M., Ding, H.J., Ge, W., 2007. Transient responses in a two-layered elasto-piezoelectric composite hollow cylinder. Composite Structures, 79(2):192-201. ![]() [36]Wang, Z., Liang, X., Liu, G., 2013a. An analytical method for evaluating the dynamic response of plates subjected to underwater shock employing Mindlin plate theory and Laplace transforms. Mathematical Problems in Engineering, 2013:803609. ![]() [37]Wang, Z., Liang, X., Fallah, A.S., et al., 2013b. A novel efficient method to evaluate the dynamic response of laminated plates subjected to underwater shock. Journal of Sound and Vibration, 332(21):5618-5634. ![]() [38]Wen, P.H., Sladek, J., Sladek, V., 2011. Three-dimensional analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 87(10):923-942. ![]() [39]Ying, J., Wang, H.M., 2009. Magnetoelectroelastic fields in rotating multiferroic composite cylindrical structures. Journal of Zhejiang University-SCIENCE A, 10(3):319-326. ![]() [40]Ying, J., Lu, C.F., Lim, C.W., 2009. 3D thermoelasticity solutions for functionally graded thick plates. Journal of Zhejiang University-SCIENCE A, 10(3):327-336. ![]() [41]Zhou, F., Li, S., Lai, Y., 2011. Three-dimensional analysis for transient coupled thermoelastic response of a functionally graded rectangular plate. Journal of Sound and Vibration, 330(16):3990-4001. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>