CLC number: TH703.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-12-12
Cited: 1
Clicked: 6552
Wei-zhong Wang, Ji Liang, Yong Ruan, Wei Pang, Zheng You. Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1600028 @article{title="Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments", %0 Journal Article TY - JOUR
Abstract: In this work, AlN thin films growth on the 4H-SiC substrate are characterized and the behaviors of the surface acoustic wave devices on AlN/4H-SiC media are also studied. As suggested by the authors, this material stack is potential for passive wireless SAW sensors in the harsh environment.
面向恶劣环境的基于AlN/4H-SiC材料的声表面波谐振器设计与制作创新点:1. 首次在耐高温材料AlN/4H-SiC上设计、仿真及制作SAW谐振器并测试电学性能;2. 在4H-SiC上得到了高质量c轴择优取向的AlN压电薄膜并开发了一套与MEMS工艺兼容的SAW谐振器制作工艺。 方法:1. 通过对SAW谐振器所有结构参数的设计与仿真,得到谐振器的谐振频率与反谐振频率等(图2和3);2. 利用磁控溅射方法在4H-SiC衬底上溅射高质量c轴择优取向的AlN压电薄膜,再利用光刻、湿法腐蚀等MEMS工艺制作SAW谐振器(图4);3. 通过扫描电镜和X射线衍射等手段,检测AlN压电薄膜质量(图5和6)及器件制作结果(图7);4. 利用网络分析仪测试SAW谐振器电学性能并与仿真结果相比较,验证SAW谐振器设计仿真方法和MEMS制作工艺的可行性和有效性(图8)。 结论:1. 基于耐高温材料AlN/4H-SiC,成功设计并制作出SAW谐振器(尺寸:1107 μm×721 μm);2. 在4H-SiC上得到了高质量c轴择优取向的AlN压电薄膜,衍射峰为36.10°,摇摆曲线半高宽仅1.19°;3. SAW谐振器电学性能测试结果与仿真结果一致,证明其设计仿真方法正确有效、MEMS制作工艺可行。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Al tahtamouni, T.M., Lin, J.Y., Jiang, H.X., 2012. High quality AlN grown on double layer AlN buffers on SiC substrate for deep ultraviolet photodetectors. Applied Physics Letters, 101(19):192106. ![]() [2]Aubert, T., Elmazria, O., Assouar, B., et al., 2010. Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications. Applied Physics Letters, 96(20):203503. ![]() [3]Aubert, T., Bardong, J., Legrani, O., et al., 2013. In situ high-temperature characterization of AlN-based surface acoustic wave devices. Journal of Applied Physics, 114(1):014505. ![]() [4]Beshkova, M., Zakhariev, Z., Birch, J., et al., 2003. Sublimation epitaxy of AlN layers on 4H-SiC depending on the type of crucible. Journal of Materials Science: Materials in Electronics, 14(10):767-768. ![]() [5]Chen, Z., Newman, S., Brown, D., et al., 2008. High quality AlN grown on SiC by metal organic chemical vapor deposition. Applied Physics Letters, 93(19):191906. ![]() [6]Cho, E., Mogilatenko, A., Brunner, F., et al., 2013. Impact of AlN nucleation layer on strain in GaN grown on 4H-SiC substrates. Journal of Crystal Growth, 371:45-49. ![]() [7]Du, X.Y., 2012. Design and Fabrication of a Prototype Aluminum Nitride-based Pressure Sensor with Finite Element Analysis and Validation. PhD Thesis, Wayne State University, Detroit, USA. ![]() [8]Elmazria, O., Aubert, T., 2011. Wireless SAW sensor for high temperature applications: material point of view. SPIE Microtechnologies, International Society for Optics and Photonics, No.806602. ![]() [9]Ferro, G., Okumura, H., Yoshida, S., 2000. Growth mode of AlN epitaxial layers on 6H-SiC by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 209(2-3):415-418. ![]() [10]Fraga, M.A., Furlan, H., Pessoa, R.S., et al., 2014. Wide band gap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview. Microsystem Technologies, 20(1):9-21. ![]() [11]Greve, D.W., Chin, T.L., Zheng, P., et al., 2013. Surface acoustic wave devices for harsh environment wireless sensing. Sensors, 13(6):6910-6935. ![]() [12]Iriarte, G.F., Reyes, D.F., Gonzalez, D., et al., 2011. Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering. Applied Surface Science, 257(22):9306-9313. ![]() [13]Jiang, X.N., Kim, K., Zhang, S.J., et al., 2013. High-temperature piezoelectric sensing. Sensors, 14(1):144-169. ![]() [14]Kim, M., Ohta, J., Kobayashi, A., et al., 2008. Low-temperature growth of high quality AlN films on carbon face 6H-SiC. physica status solidi (RRL)–Rapid Research Letters, 2(1):13-15. ![]() [15]Kitagawa, S., Miyake, H., Hiramatsu, K., 2014. High-quality AlN growth on 6H-SiC substrate using three dimensional nucleation by low-pressure hydride vapor phase epitaxy. Japanese Journal of Applied Physics, 53(5S1):05FL03. ![]() [16]Kuang, X.P., Zhang, H.Y., Wang, G.G., et al., 2012. AlN films prepared on 6H–SiC substrates under various sputtering pressures by RF reactive magnetron sputtering. Applied Surface Science, 263:62-68. ![]() [17]Lin, C.M., Lien, W.C., Felmetsger, V.V., et al., 2010a. AlN thin films grown on epitaxial 3C–SiC (100) for piezoelectric resonant devices. Applied Physics Letters, 97(14):141907. ![]() [18]Lin, C.M., Lien, W.C., Yen, T.T., et al., 2010b. Growth of highly c-axis oriented AlN films on 3C–SiC/Si substrate. Solid-State Sensors, Actuators, and Microsystems Workshop, p.324-327. ![]() [19]Lin, C.M., Chen, Y.Y., Felmetsger, V.V., et al., 2013. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures. Journal of Micromechanics and Microengineering, 23(2):025019. ![]() [20]Liu, B.Q., Zhang, C.R., Ji, X.J., et al., 2014. An improved performance frequency estimation algorithm for passive wireless SAW resonant sensors. Sensors, 14(12):22261-22273. ![]() [21]Liu, H.Y., Tang, G.S., Zeng, F., et al., 2013. Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature. Journal of Crystal Growth, 363:80-85. ![]() [22]Liu, L., Edgar, J.H., 2002. Substrates for gallium nitride epitaxy. Materials Science and Engineering: R: Reports, 37(3):61-127. ![]() [23]Pisano, A.P., 2009. Harsh Environment Wireless MEMS Sensors for Energy & Power. Technical Report, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA. ![]() [24]Senesky, D.G., 2013. Wide bandgap semiconductors for sensing within extreme harsh environments. ECS Transactions, 50(6):233-238. ![]() [25]Senesky, D.G., Jamshidi, B., Cheng, K.B., et al., 2009. Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sensors Journal, 9(11):1472-1478. ![]() [26]Takagaki, Y., Santos, P.V., Wiebicke, E., et al., 2002. Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates. Applied Physics Letters, 81(14):2538-2540. ![]() [27]Thompson, H.A., 2004. Wireless and internet communications technologies for monitoring and control. Control Engineering Practice, 12(6):781-791. ![]() [28]Tungasmita, S., Birch, J., Persson, P.O.A., et al., 2000. Enhanced quality of epitaxial AlN thin films on 6H–SiC by ultra-high-vacuum ion-assisted reactive DC magnetron sputter deposition. Applied Physics Letters, 76(2):170-172. ![]() [29]Wang, Z.P., Morimoto, A., Kawae, T., et al., 2011. Growth of preferentially-oriented AlN films on amorphous substrate by pulsed laser deposition. Physics Letters A, 375(33):3007-3011. ![]() [30]Ye, X.S., Fang, L., Liang, B., et al., 2011. Studies of a high-sensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sensors and Actuators A: Physical, 169(1):74-82. ![]() [31]You, Z., Wang, W.Z., Chen, S., et al., 2014. Applications of wireless MEMS sensing system in gas turbine and harsh environment. Acta Aeronautica et Astronautica Sinica, 35(8):2081-2090 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>