CLC number: TU433
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-01-31
Cited: 0
Clicked: 6659
Ze-xiang Wu, Hui Ji, Chuang Yu, Cheng Zhou. EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700089 @article{title="EPR-RCGA-based modelling of compression index and RMSE-AIC-BIC-based model selection for Chinese marine clays and their engineering application", %0 Journal Article TY - JOUR
Abstract: It is an interesting work of application of an optimisation method to determine compressibility parameter of Chinese marine clay. The optimal correlation using only natural water content and liquid limit is selected according to the RMSE, AIC and BIC . The proposed correlation is evaluated in better performance than existing empirical correlations on predicting the compression index for all selected Chinese marine clays. This correlation is validated using finite element method. The EPR and RCGA combined technique is powerful for the correlation of compression index by physical properties of clay.
中国海相黏土的压缩指数的EPR-RCGA回归模型和RMSE-AIC-BIC模型选择及其工程应用创新点:结合EPR和RCGA方法,将中国沿海21个不同区域的黏土的压缩性指数与天然含水率和液塑限之间建立相关关系,并采用均方根误差(RMSE)、赤池信息量准则(AIC)和贝叶斯信息准则(BIC)对所建立的不同回归模型进行优选. 方法:1. 从文献中收集中国沿海21个地区的黏土的压缩指数和常见的基本物理性质,并对数据进行整理和分类. 2. 进行压缩指数和天然含水量及液塑限之间的EPR回归关系分析,并采用新近提出的RCGA优化方法来提高回归关系的精度. 3. 采用RMSE、AIC和BIC对不同组合下的回归关系进行优选,并确定最佳回归关系.4. 将得到的关系式应用到有限元路堤计算来验证所得关系式的实用性和准确性. 结论:1. 本文提出的压缩指数关系式比现有的经验公式更好,预测得到的压缩指数更为精确. 2. 采用所提出的压缩指数回归模型预测了东南沿海一路堤下不同土层的压缩指数,并应用所得数据和有限元方法对路堤的沉降进行了模拟分析,验证了所提方法的可靠性. 3. 所有结果表明,结合基于EPR和RCGA的回归分析方法以及基于RMSE、AIC和BIC的模型选择方法对分析压缩指数与黏土的物理性质的相关关系是切实可行的,可以更好地服务于中国沿海地区的工程设计. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akaike H, 1998. Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike. Springer, p.199-213. ![]() [2]Azzouz AS, Krizek RJ, Corotis RB, 1976. Regression analysis of soil compressibility. Soils and Foundations, 16(2):19-29. ![]() [3]Bowles JE, 1979. Physical and Geotechnical Properties of Soils. McGraw Hill, New York, USA. ![]() [4]Burland J, 1990. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329-378. ![]() [5]Carrier WD, 1985. Consolidation parameters derived from index tests. Géotechnique, 35(2):211-213. ![]() [6]Chen B, Sun DA, Lu HB, 2013. Experimental study of compression behavior of marine soft clays. Rock and Soil Mechanics, 34(2):381-388 (in Chinese). ![]() [7]Faramarzi A, Alani AM, Javadi AA, 2014. An EPR-based self-learning approach to material modelling. Computers & Structures, 137:63-71. ![]() [8]Gao DZ, Wei DD, Hu ZX, 1986. Geotechnical properties of Shanghai soils and engineering applications. Marine Geotechnology and Nearshore/Offshore Structures. ASTM International, USA. ![]() [9]Giustolisi O, Savic DA, 2006. A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3):207-222. ![]() [10]Herrero AA, 1983. End-product inhibition in anaerobic fermentations. Trends in Biotechnology, 1(2):49-53. ![]() [11]Hong ZS, Yin J, Cui YJ, 2010. Compression behaviour of reconstituted soils at high initial water contents. Géotechnique, 60(9):691-700. ![]() [12]Hong ZS, Zeng LL, Cui YJ, et al., 2012. Compression behaviour of natural and reconstituted clays. Géotechnique, 62(4):291-301. ![]() [13]Huang MS, Liu YH, Sheng DC, 2010. Simulation of yielding and stress–stain behavior of Shanghai soft clay. Computers and Geotechnics, 38(3):341-353. ![]() [14]Jin YF, Yin ZY, Shen SL, et al., 2016a. Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis. Acta Geotechnica, 11(5):1131-1145. ![]() [15]Jin YF, Yin ZY, Shen SL, et al., 2016b. Selection of sand models and identification of parameters using an enhanced genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 40(8):1219-1240. ![]() [16]Jin YF, Yin ZY, Riou Y, et al., 2017a. Identifying creep and destructuration related soil parameters by optimization methods. KSCE Journal of Civil Engineering, 21(4):1123-1134. ![]() [17]Jin YF, Yin ZY, Shen SL, et al., 2017b. A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems in Science and Engineering, 25(9):1343-1366. ![]() [18]Karstunen M, Yin ZY, 2010. Modelling time-dependent behaviour of Murro test embankment. Géotechnique, 60(10):735-749. ![]() [19]Koppula S, 1981. Statistical estimation of compression index. Geotechnical Testing Journal, 4(2):68-73. ![]() [20]Li G, Zhang JL, Yang Q, 2016. Geotechnical investigations at the Dalian offshore airport, China. Marine Georesources & Geotechnology, 34(8):747-758. ![]() [21]Liu S, Shao G, Du Y, et al., 2011. Depositional and geotechnical properties of marine clays in Lianyungang, China. Engineering Geology, 121(1-2):66-74. ![]() [22]Miao LC, Zhang JH, Chen YN, 2007. Study on compressibility of Jiangsu marine clay. Chinese Journal of Geotechnical Engineering, 29(11):1711-1714 (in Chinese). ![]() [23]Nagaraj T, Murthy BS, 1986. A critical reappraisal of compression index equations. Géotechnique, 36(1):27-32. ![]() [24]Nath A, DeDalal SS, 2004. The role of plasticity index in predicting compression behaviour of clays. Electronic Journal of Geotechnical Engineering, 9:1-7. ![]() [25]Ng CW, Li Q, Liu GB, 2011. Characteristics of one-dimensional compressibility of Shanghai clay. Chinese Journal of Geotechnical Engineering, 33(4):630-636 (in Chinese). ![]() [26]Ozer M, Isik NS, Orhan M, 2008. Statistical and neural network assessment of the compression index of clay-bearing soils. Bulletin of Engineering Geology and the Environment, 67(4):537-545. ![]() [27]Park HI, Lee SR, 2011. Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics, 38(4):472-481. ![]() [28]Poles S, Fu Y, Rigoni E, 2009. The effect of initial population sampling on the convergence of multi-objective genetic algorithms. Multiobjective Programming and Goal Programming. Springer, p.123-133. ![]() [29]Rezania M, Javadi AA, Giustolisi O, 2010. Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression. Computers and Geotechnics, 37(1-2):82-92. ![]() [30]Schwarz G, 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464. ![]() [31]Shen SL, Chai JC, Hong ZS, et al., 2005. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomembranes, 23(6):463-485. ![]() [32]Shen SL, Wu HN, Cui YJ, et al., 2014. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 40:309-323. ![]() [33]Shen SL, Wang JP, Wu HN, et al., 2015. Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing. Ocean Engineering, 110:174-182. ![]() [34]Sridharan A, Nagaraj H, 2000. Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties. Canadian Geotechnical Journal, 37(3):712-722. ![]() [35]Sridharan A, Gurtug Y, 2005. Compressibility characteristics of soils. Geotechnical & Geological Engineering, 23(5):615-634. ![]() [36]Terzaghi K, Peck RB, Mesri G, 1996. Soil Mechanics in Engineering Practice. John Wiley & Sons. ![]() [37]Tiwari B, Ajmera B, 2012. New correlation equations for compression index of remolded clays. Journal of Geotechnical and Geoenvironmental Engineering, 138(6):757-762. ![]() [38]Wei DD, Hu ZX, 1980. Experimental study of preconsolidation pressure and compressibility parameters of Shanghai subsoil. Chinese Journal of Geotechnical Engineering, 2(4):13-22 (in Chinese). ![]() [39]Wroth C, Wood D, 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15(2):137-145. ![]() [40]Wu CJ, Ye GL, Wang JH, 2014. Relationship between compression index and natural water content of Shanghai clay. Rock and Soil Mechanics, 35(11):3184-3190 (in Chinese). ![]() [41]Wu CJ, Ye GL, Zhang LL, et al., 2015. Depositional environment and geotechnical properties of Shanghai clay: a comparison with Ariake and Bangkok clays. Bulletin of Engineering Geology and the Environment, 74(3):717-732. ![]() [42]Wu HN, Shen SL, Ma L, et al., 2015. Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Marine Georesources & Geotechnology, 33(6):532-541. ![]() [43]Yao YP, Sun DA, 2000. Application of Lade’s criterion to Cam-clay model. Journal of Engineering Mechanics, 126(1):112-119. ![]() [44]Yao YP, Hou W, Zhou AN, 2009. UH model: three dimensional unified hardening model for overconsolidated clays. Géotechnique, 59(5):451-469. ![]() [45]Yin JH, 1999. Properties and behaviour of Hong Kong marine deposits with different clay contents. Canadian Geotechnical Journal, 36(6):1085-1095. ![]() [46]Yin JH, 2002. Stress-strain strength characteristics of a marine soil with different clay contents. Geotechnical Testing Journal, 25(4):459-462. ![]() [47]Yin ZY, Hicher PY, 2008. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12):1515-1535. ![]() [48]Yin ZY, Wang JH, 2012. A one-dimensional strain-rate based model for soft structured clays. Science China Technological Sciences, 55(1):90-100. ![]() [49]Yin ZY, Chang CS, Hicher PY, et al., 2009. Micromechanical analysis of kinematic hardening in natural clay. International Journal of Plasticity, 25(8):1413-1435. ![]() [50]Yin ZY, Chang CS, Karstunen M, et al., 2010. An anisotropic elastic-viscoplastic model for soft clays. International Journal of Solids and Structures, 47(5):665-677. ![]() [51]Yin ZY, Karstunen M, Chang CS, et al., 2011. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering, 137(11):1103-1113. ![]() [52]Yin ZY, Xu Q, Hicher PY, 2013. A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotechnica, 8(5):509-523. ![]() [53]Yin ZY, Zhu QY, Yin JH, et al., 2014. Stress relaxation coefficient and formulation for soft soils. Géotechnique Letters, 4(1):45-51. ![]() [54]Yin ZY, Yin JH, Huang HW, 2015. Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modelling. Marine Georesources & Geotechnology, 33(1):79-91. ![]() [55]Yoon GL, Kim BT, Jeon SS, 2004. Empirical correlations of compression index for marine clay from regression analysis. Canadian Geotechnical Journal, 41(6):1213-1221. ![]() [56]Zhu QY, Jin YF, Yin ZY, et al., 2013. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(11):767-777. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>