CLC number: P235
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-07
Cited: 0
Clicked: 5733
Cheng-ming Ye, Peng Cui, Saied Pirasteh, Jonathan Li, Yao Li. Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700149 @article{title="Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery", %0 Journal Article TY - JOUR
基于高光谱遥感影像的建筑物表面材质识别方法创新点:对建筑物材料进行光谱测试,并对其高光谱响应规律进行分析,找出有诊断意义的光谱位置;基于实验和验证得出应用方法的适应性,以提高信息提取精度。 方法:1. 设计建筑物材质信息提取流程(图1),并对高光谱数据进行基础处理;2. 对建筑物材料进行光谱测试(波长范围为350~2500 nm,图3),并完成各类建筑物的诊断性光谱分析;3. 利用光谱角度法(公式(1))和光谱信息散度法(公式(2))进行材质信息提取(图5和6);4. 综合分析两种方法的应用过程与控制参数和准确率的关系。 结论:1. 两种方法皆可提取建筑物材质信息,但在应用过程中需要进行参数的适应性调整,这是提高准确率的关键;2. 在建筑物材质信息提取方面,光谱角度法的提取准确率略高于光谱散度法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bajorski, P., 2011. Statistical inference in PCA for hyperspectral images. IEEE Journal of Selected Topics in Signal Processing, 5(3):438-445. ![]() [2]Chen, Y.S., Lin, Z.H., Zhao, X., et al., 2014. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6):2094-2107. ![]() [3]Elnazir, R., Feng, X.Z., Cheng, Z., 2004. Satellite remote sensing for urban growth assessment in Shaoxing City-Zhejiang Province. Journal of Zhejiang University-SCIENCE, 5(9):1095-1101. ![]() [4]Fauvel, M., Tarabalka, Y., Benediktsson, J.A., et al., 2013. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3):652-675. ![]() [5]Fiumi, L., 2012. Surveying the roofs of Rome. Journal of Cultural Heritage, 13(3):304-313. ![]() [6]Franke, J., Roberts, D.A., Halligan, K., et al., 2009. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environment, 113(8):1712-1723. ![]() [7]Geng, X.R., Ji, L.Y., Sun, K., 2016. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data. Frontiers of Information Technology & Electronic Engineering, 17(5):403-412. ![]() [8]Hadigheh, S.M.H., Ranjbar, H., 2013. Lithological mapping in the eastern part of the central Iranian volcanic belt using combined ASTER and IRS data. Journal of the Indian Society of Remote Sensing, 41(4):921-931. ![]() [9]He, C., Zhao, Y.Y., Tian, J., et al., 2013. Improving change vector analysis by cross-correlogram spectral matching for accurate detection of land-cover conversion. International Journal of Remote Sensing, 34(4):1127-1145. ![]() [10]Huang, X., Lu, Q.K., Zhang, L.P., 2014. A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 90:36-48. ![]() [11]Jin, X.Y., Davis, C.H., 2005. Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP Journal on Advances in Signal Processing, 2005(14):2196-2206. ![]() [12]Keshava, N., 2004. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Transactions on Geoscience and Remote Sensing, 42(7):1552-1565. ![]() [13]Kotthaus, S., Smith, T.E.L., Wooster, M.J., et al., 2014. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 94(8):194-212. ![]() [14]Li, Z.Y., Li, J., Zhou, S.L., et al., 2015. Developing an algorithm for local anomaly detection based on spectral space window in hyperspectral image. Earth Science Informatics, 8(4):741-749. ![]() [15]Martin, J.W., 1993. Quantitative characterization of spectral ultraviolet radiation-induced photodegradation in coating systems exposed in the laboratory and the field. Progress in Organic Coatings, 23(1):49-70. ![]() [16]Mitchell, J.J., Glenn, N.F., 2009. Subpixel abundance estimates in mixture-tuned matched filtering classifications of leafy spurge (Euphorbia esula L.). International Journal of Remote Sensing, 30(23):6099-6119. ![]() [17]Onojeghuo, A.O., Blackburn, G.A., 2011. Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats. Remote Sensing of Environment, 115(8):2025-2034. ![]() [18]Petropoulos, G.P., Vadrevu, K.P., Xanthopoulos, G., et al., 2010. A comparison of spectral angle mapper and artificial neural network classifiers combined with landsat TM imagery analysis for obtaining burnt area mapping. Sensors, 10(3):1967-1985. ![]() [19]Ran, Q.H., Qian, Q., Li, W., et al., 2015. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(2):131-142. ![]() [20]Sadezky, A., Muckenhuber, H., Grothe, H., et al., 2005. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 43(8):1731-1742. ![]() [21]Shahtahmassebi, A., Yu, Z.L., Wang, K., et al., 2012. Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(2):146-158. ![]() [22]Tuia, D., Ratle, F., Pacifici, F., et al., 2009. Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7):2218-2232. ![]() [23]Vega, S.H., Huaman, D.L., Manian, V., 2012. Object segmentation in hyperspectral images using active contours and graph cuts. International Journal of Remote Sensing, 33(4):1246-1263. ![]() [24]Vu, T.T., Yamazaki, F., Matsuoka, M., 2009. Multi-scale solution for building extraction from LiDAR and image data. International Journal of Applied Earth Observation and Geoinformation, 11(4):281-289. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>