CLC number: TK09
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-15
Cited: 1
Clicked: 6475
Ran Tao, Meng-meng Yang, Shui-qing Li. Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700156 @article{title="Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation", %0 Journal Article TY - JOUR
离散元-计算流体动力学耦合方法模拟多纤维阵列过滤微米级颗粒创新点:1. 使用DEM-CFD流固双向耦合方法,建立了适用于多纤维阵列过滤微米颗粒的数值模拟方法;2. 得到并对比了不同排列形式的过滤压降和捕捉效率. 方法:1. 通过数值模拟,得到顺列和错列排布纤维的过滤压降及捕捉效率(图2和3、表2);2. 通过数值模拟,分析前加密、后加密错列排布纤维与规则错列排列纤维的优劣(图6和7),并得出颗粒在滤料中的沉积分布(图8). 结论:1. 错列纤维比顺列纤维提前进入堵塞期,在沉积相同颗粒数时具有更低的压降,且在清洁滤料期具有更高的捕捉效率;2. 前加密错列排布比后加密错列排布更早进入堵塞期,且总体穿透颗粒数量更少;3. 前加密错列排布适用于工业滤料,而后加密错列排布适用于一次性个人防护用品. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Benyahia S, Syamlal M, O’Brien TJ, 2006. Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technology, 162(2):166-174. ![]() [2]Chen S, Li S, Yang M, 2015. Sticking/Rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size. Powder Technology, 274: 431-440. ![]() [3]Chen S, Liu W, Li S, 2016a. Effect of long-range electrostatic repulsion on pore clogging during microfiltration. Physical Review E, 94(6):063108. ![]() [4]Chen S, Li S, Liu W, et al., 2016b. Effect of long-range repulsive coulomb interactions on packing structure of adhesive particles. Soft Matter, 12(6):1836-1846. ![]() [5]Dittler A, Gutmann B, Lichtenberger R, et al., 1998. Optical in situ measurement of dust cake thickness distributions on rigid filter media for gas cleaning. Powder Technology, 99(2):177-184. ![]() [6]Dunnett SJ, Clement CF, 2006. A numerical study of the effects of loading from diffusive deposition on the efficiency of fibrous filters. Journal of Aerosol Science, 37(9):1116-1139. ![]() [7]Dunnett SJ, Clement CF, 2012. Numerical investigation into the loading behaviour of filters operating in the diffusional and interception deposition regimes. Journal of Aerosol Science, 53:85-99. ![]() [8]Flagan CR, Seinfel HJ, 1988. Fundamentals of Air Pollution Engineering. Prentice Hall, Englewood Cliffs, New Jersey, USA, p.433-455. ![]() [9]Garg R, Galvin J, Li T, et al., 2012. Open-source MFIX-DEM software for gas–solids flows: part I—verification studies. Powder Technology, 220:122-137. ![]() [10]Hosseini SA, Tafreshi HV, 2010. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technology, 201(2):153-160. ![]() [11]Johnson KL, Kendall K, Roberts AD, 1971. Surface energy and the contact of elastic solids. Proceedings of Royal Society London A: Mathematical, Physical and Engineering Sciences, 324(1558):301-313. ![]() [12]Kanaoka C, Emi H, Myojo T, 1980. Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load. Journal of Aerosol Science, 11(4):383-385. ![]() [13]Karadimos A, Ocone R, 2003. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Technology, 137(3):109-119. ![]() [14]Kasper G, Schollmeier S, Meyer J, et al., 2009. The collection efficiency of a particle-loaded single filter fiber. Journal of Aerosol Science, 40(12):993-1009. ![]() [15]Kasper G, Schollmeier S, Meyer J, 2010. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. Journal of Aerosol Science, 41(12):1167-1182. ![]() [16]Kolakaluri R, Murphy E, Subramaniam S, et al., 2015. Filtration model for polydisperse aerosols in gas-solid flow using granule-resolved direct numerical simulation. AIChE Journal, 61(11):3594-3606. ![]() [17]LaMarche CQ, Miller AW, Liu P, et al., 2016. Linking micro-scale predictions of capillary forces to macro-scale fluidization experiments in humid environments. AIChE Journal, 62(10):3585-3597. ![]() [18]Li SQ, Marshall JS, 2007. Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array. Journal of Aerosol Science, 38(10):1031-1046. ![]() [19]Li SQ, Marshall JS, Liu GQ, et al., 2011. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Progress in Energy and Combustion Science, 37(6):633-668. ![]() [20]Li T, Garg R, Galvin J, et al., 2012. Open-source MFIX-DEM software for gas-solids flows: part II—validation studies. Powder Technology, 220:138-150. ![]() [21]Liu D, van Wachem BGM, Mudde RF, et al., 2016. An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization. AIChE Journal, 62(7):2259-2270. ![]() [22]Liu W, Li S, Baule A, et al., 2015. Adhesive loose packings of small dry particles. Soft Matter, 11(32):6492-6498. ![]() [23]Liu ZG, Wang PK, 1997. Pressure drop and interception efficiency of multifiber filters. Aerosol Science and Technology, 26(4):313-325. ![]() [24]Luding S, 2008. Cohesive, frictional powders: contact models for tension. Granular Matter, 10(4):235-246. ![]() [25]Marshall JS, 2009. Discrete-element modeling of particulate aerosol flows. Journal of Computational Physics, 228(5):1541-1561. ![]() [26]Marshall JS, Li S, 2014. Adhesive Particle Flow. Cambridge University Press, New York, USA, p.86-99. ![]() [27]Maze B, Vahedi Tafreshi H, Wang Q, et al., 2007. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. Journal of Aerosol Science, 38(5):550-571. ![]() [28]Myojo T, Kanaoka C, Emi H, 1984. Experimental observation of collection efficiency of a dust-loaded fiber. Journal of Aerosol Science, 15(4):483-489. ![]() [29]Novick VJ, Higgins PJ, Dierkschiede B, et al., 1990. Efficiency and mass loading characteristics of a typical HEPA filter media material. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference, 2:782-798. ![]() [30]Roussel N, Nguyen TLH, Coussot P, 2007. General probabilistic approach to the filtration process. Physical Review Letters, 98(11):114502. ![]() [31]Schiller S, Schmid H, 2015. Highly efficient filtration of ultrafine dust in baghouse filters using precoat materials. Powder Technology, 279:96-105. ![]() [32]Tamadondar MR, Rasmuson A, Thalberg K, et al., 2017. Numerical modeling of adhesive particle mixing. AIChE Journal, 63(7):2599-2609. ![]() [33]Thomas D, Contal P, Renaudin V, et al., 1999. Modelling pressure drop in HEPA filters during dynamic filtration. Journal of Aerosol Science, 30(2):235-246. ![]() [34]Thomas D, Penicot P, Contal P, et al., 2001. Clogging of fibrous filters by solid aerosol particles: experimental and modelling study. Chemical Engineering Science, 56(11):3549-3561. ![]() [35]Tien C, Teoh SK, Tan RBH, 2001. Cake filtration analysis— the effect of the relationship between the pore liquid pressure and the cake compressive stress. Chemical Engineering Science, 56(18):5361-5369. ![]() [36]Tomas J, 2007. Adhesion of ultrafine particles—a micromechanical approach. Chemical Engineering Science, 62(7):1997-2010. ![]() [37]Wang H, Zhao H, Guo Z, et al., 2013. Lattice Boltzmann method for simulations of gas-particle flows over a backward-facing step. Journal of Computational Physics, 239:57-71. ![]() [38]Wang J, Pui DYH, 2009. Filtration of aerosol particles by elliptical fibers: a numerical study. Journal of Nanoparticle Research, 11(1):185-196. ![]() [39]Yang M, Li S, Yao Q, 2013. Mechanistic studies of initial deposition of fine adhesive particles on a fiber using discrete-element methods. Powder Technology, 248:44-53. ![]() [40]Zhu HP, Zhou ZY, Yang RY, et al., 2008. Discrete particle simulation of particulate systems: a review of major applications and findings. Chemical Engineering Science, 63(23):5728-5770. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>