CLC number: TK31
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-12-15
Cited: 1
Clicked: 5224
Xue-cheng Wu, Can Li, Jian-zheng Cao, Yong-xin Zhang, Ling-hong Chen, Gerard Gréhan, Ke-fa Cen. In-situ characterization of gas-liquid precipitation reaction in a spray using rainbow refractometry[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1700240 @article{title="In-situ characterization of gas-liquid precipitation reaction in a spray using rainbow refractometry", %0 Journal Article TY - JOUR
彩虹折射法对喷雾气液沉淀反应的原位表征创新点:1. 基于彩虹折射法,首次对气液吸收沉淀反应的原位表征进行探究;2. 通过若干实验和详细的传热计算分析,成功验证了其可行性和有效性. 方法:1. 通过与Abbe折射仪对比,确定全场彩虹测量的准确性(图3和公式(5));2. 搭建全局彩虹技术(GRT)测量系统进行喷雾测量实验(图2),并记录反应过程中的彩虹图像和离线采样液滴用于显微分析(图4和5);3. 对涉及到的气液吸收沉淀反应进行传热计算和分析(公式(7)~(13)). 结论:1. 初步表明了利用溶液折射率表征Ca(OH)2质量分数的可行性.2. 实验结果表明GRT的测量结果精确;反应后液滴折射率减少并趋向于水,反应进程可体现在彩虹角(即折射率)的变化上.3. 不同浓度Ba(OH)2吸收CO2的反应进一步证明了该方法原位表征气液吸收沉淀反应的可行性.4. 反应的传热计算和分析表明反应热所造成的温度升高可以忽略,验证了该方法的有效性. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Gao X, Huo W, Luo, ZY, et al., 2008. CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber. Journal of Zhejiang University-SCIENCE A, 9(11):1601-1613. ![]() [2]Gao X, Guo RT, Ding HL, et al., 2009. Absorption of NO2 into Na2S solution in a stirred tank reactor. Journal of Zhejiang University-SCIENCE A, 10(3):434-438. ![]() [3]Haghnegahdar MR, Rahimi A, Hatamipour MS, 2011. A rate equation for Ca(OH)2 and CO2 reaction in a spouted bed reactor at low gas concentrations. Chemical Engineering Research and Design, 89(6):616-620. ![]() [4]Letty C, Renou B, Reveillon J, et al., 2013. Experimental study of droplet temperature in a two-phase heptane/air V-flame. Combustion and Flame, 160(9):1803-1811. ![]() [5]Li H, Rosebrock CD, Wriedt T, et al., 2017. The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-alkane droplets. Journal of Quantitative Spectroscopy and Radiative Transfer, 195:164-175. ![]() [6]Lohner H, Lehmann P, Bauckhage K, 1999. Detection based on rainbow refractometry of droplet sphericity in liquid– liquid systems. Applied Optics, 38(7):1127-1132. ![]() [7]Nussenzveig H, 1969. High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory. Journal of Mathematical Physics, 10(1):125-176. ![]() [8]Ouboukhlik M, Saengkaew S, Fournier-Salaün MC, et al., 2015a. Local measurement of mass transfer in a reactive spray for CO2 capture. The Canadian Journal of Chemical Engineering, 93(2):419-426. ![]() [9]Ouboukhlik M, Godard G, Saengkaew S, et al., 2015b. Mass transfer evolution in a reactive spray during carbon dioxide capture. Chemical Engineering & Technology, 38(7):1154-1164. ![]() [10]Promvongsa J, Vallikul P, Fungtammasan B, et al., 2017. Multicomponent fuel droplet evaporation using 1D global rainbow technique. Proceedings of the Combustion Institute, 36(2):2401-2408. ![]() [11]Quan X, Fry ES, 1995. Empirical equation for the index of refraction of seawater. Applied Optics, 34(18):3477-3480. ![]() [12]Rosebrock CD, Shirinzadeh S, Soeken M, et al., 2016. Time-resolved detection of diffusion limited temperature gradients inside single isolated burning droplets using rainbow refractometry. Combustion and Flame, 168:255-269. ![]() [13]Roth N, Anders K, Frohn A, 1990. Simultaneous measurement of temperature and size of droplets in the micrometer range. Journal of Laser Applications, 2(1):37-42. ![]() [14]Saengkaew S, 2005. Study of Spray Heat Up: on the Development of Global Rainbow Techniques. PhD Thesis, Rouen University, Rouen, France. ![]() [15]Saengkaew S, Charinpanitkul T, Vanisri H, et al., 2006. Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories. Optics Communications, 259(1):7-13. ![]() [16]Saengkaew S, Charinpanitkul T, Vanisri H, et al., 2007. Rainbow refractrometry on particles with radial refractive index gradients. Experiments in Fluids, 43(4):595-601. ![]() [17]Saengkaew S, Godard G, Blaisot J, et al., 2009. Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets. Experiments in Fluids, 47:839-848. ![]() [18]Song F, Xu C, Wang S, et al., 2016. Measurement of temperature gradient in a heated liquid cylinder using rainbow refractometry assisted with infrared thermometry. Optics Communications, 380:179-185. ![]() [19]van Beeck J, Riethmuller M, 1996. Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity. Applied Optics, 35(13):2259-2266. ![]() [20]van Beeck J, Giannoulis D, Zimmer L, et al., 1999. Global rainbow thermometry for droplet-temperature measurement. Optics Letters, 24(23):1696-1698. ![]() [21]Verdier A, Santiago JM, Vandel A, et al., 2016. Experimental study of local flame structures and fuel droplet properties of a spray jet flame. Proceedings of the Combustion Institute, 36(2):2595-2602. ![]() [22]Whitaker S, 1972. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE Journal, 18(2):361-371. ![]() [23]Wilms J, Weigand B, 2007. Composition measurements of binary mixture droplets by rainbow refractometry. Applied Optics, 46(11):2109-2118. ![]() [24]Wu X, Wu Y, Saengkaew S, et al., 2012. Concentration and composition measurement of sprays with a global rainbow technique. Measurement Science and Technology, 23(12):125302. ![]() [25]Wu X, Jiang H, Wu Y, et al., 2014. One-dimensional rainbow thermometry system by using slit apertures. Optics Letters, 39(3):638-641. ![]() [26]Wu X, Li C, Jiang H, et al., 2017. Measurement error of global rainbow technique: the effect of recording parameters. Optics Communications, 402:311-318. ![]() [27]Yu H, Xu F, Tropea C, 2013a. Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement. Optics Express, 21(22):25761-25771. ![]() [28]Yu H, Xu F, Tropea C, 2013b. Simulation of optical caustics associated with the secondary rainbow of oblate droplets. Optics Letters, 38(21):4469-4472. ![]() [29]Zhao Y, Qiu H, 2006. Measurements of multicomponent microdroplet evaporation by using rainbow refractometer and PDA. Experiments in Fluids, 40(1):60-69. ![]() [30]Zumdahl, SS, 2009. Chemical Principles. Houghton Mifflin Company, Boston, USA. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>