
CLC number: U441.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-16
Cited: 0
Clicked: 4843
Lin Zhao, Xi Xie, Teng Wu, Shao-peng Li, Zhi-peng Li, Yao-jun Ge, Ahsan Kareem. Revisiting aerodynamic admittance functions of bridge decks[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1900353 @article{title="Revisiting aerodynamic admittance functions of bridge decks", %0 Journal Article TY - JOUR
回顾与讨论气动导纳函数方法:1. 提出一种考虑来流脉动风和气动力全部交叉分量贡献的全分量导纳函数的识别算法. 2. 利用风洞试验与数值分析结合的方法,对一组流线型和钝体断面的气动导纳进行验证. 3. 对一桥梁断面进行抖振响应分析,验证其等效气动导纳. 结论:1.通过数值计算,系统地验证了本文所提出的等效气动导纳函数具有较高的保真度. 2.风洞中流线型断面的等效气动导纳函数的辨识结果与随机子空间辨识方法的结果吻合良好. 3.通过对一组流线型和钝体断面进行气动导纳识别表明,某些断面的气动导纳高于基于准定常理论的所得值. 4.根据准定常理论下的气动导纳函数、Sears函数和实验验证的函数计算抖振响应并与风洞试验结果进行比较发现,对于流线型断面,采用Sears函数或等效气动导纳函数都是合理的,而用准定常理论得到的抖振响应则过于保守. 5.灵敏度分析表明,抖振响应对平均风速、气动导纳函数、静风力系数及其导数和颤振导数等参数非常敏感. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cao BC, Sarkar PP, 2013. Time-domain aeroelastic loads and response of flexible bridges in gusty wind: prediction and experimental validation. Journal of Engineering Mechanics, 139(3):359-366. ![]() [2]Chen XZ, Kareem A, 2001. Nonlinear response analysis of long-span bridges under turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 89(14-15):1335-1350. ![]() [3]Davenport AG, 1962. Buffeting of a suspension bridge by storm winds. Journal of the Structural Division, 88(3):233-270. ![]() [4]Deodatis G, 1996. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, 122(8):778-787. ![]() [5]Diana G, Bruni S, Cigada A, et al., 2002. Complex aerodynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 90(12-15):2057-2072. ![]() [6]Ge YJ, Zhao L, 2014. Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall. Wind and Structures, 19(4):421-441. ![]() [7]Gu M, Qin XR, 2004. Direct identification of flutter derivatives and aerodynamic admittances of bridge decks. Engineering Structures, 26(14):2161-2172. ![]() [8]Haan Jr FL, Wu T, Kareem A, 2016. Correlation structures of pressure field and integrated forces on oscillating prism in turbulent flows. Journal of Engineering Mechanics, 142(5):04016017. ![]() [9]Haldar A, Mahadevan S, 2000. Reliability Assessment Using Stochastic Finite Element Analysis. John Wiley & Sons, New York, USA. ![]() [10]Hatanaka A, Tanaka H, 2002. New estimation method of aerodynamic admittance function. Journal of Wind Engineering and Industrial Aerodynamics, 9(12-15):2073-2086. ![]() [11]Horlock JH, 1968. Fluctuating lift forces on aerofoils moving through transverse and chordwise gusts. Journal of Basic Engineering, 90(4):494-500. ![]() [12]Jain A, Jones NP, Scanlan RH, 1996. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering, 122(7):716-725. ![]() [13]Jancauskas ED, Melbourne WH, 1986. The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow. Journal of Wind Engineering and Industrial Aerodynamics, 23:395-408. ![]() [14]Lamson P, 1966. Measurements of Lift Fluctuations Due to Turbulence. PhD Thesis, California Institute of Technology, Pasadena, USA. ![]() [15]Larose GL, 2003. The spatial distribution of unsteady loading due to gusts on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 91(12-15):1431-1443. ![]() [16]Larose GL, Mann J, 1998. Gust loading on streamlined bridge decks. Journal of Fluids and Structures, 12(5):511-536. ![]() [17]Larose GL, Tanaka H, Gimsing NJ, et al., 1998. Direct measurements of buffeting wind forces on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 74-76:809-818. ![]() [18]Li MS, Yang Y, Li M, et al., 2018. Direct measurement of the Sears function in turbulent flow. Journal of Fluid Mechanics, 847:768-785. ![]() [19]Liepmann HW, 1952. On the application of statistical concepts to the buffeting problem. Journal of the Aeronautical Sciences, 19(12):793-800. ![]() [20]Ma TT, Zhao L, Cao SY, et al., 2013. Investigations of aerodynamic effects on streamlined box girder using two-dimensional actively-controlled oncoming flow. Journal of Wind Engineering and Industrial Aerodynamics, 122: 118-129. ![]() [21]Matsuda K, Hikami Y, Fujiwara T, et al., 1999. Aerodynamic admittance and the ‘strip theory’ for horizontal buffeting forces on a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3):337-346. ![]() [22]Matsuda K, Cooper KR, Tanaka H, et al., 2001. An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model. Journal of Wind Engineering and Industrial Aerodynamics, 89(7-8):619-632. ![]() [23]Nicholas M, Ogden PM, Erskine FT, 1998. Improved empirical descriptions for acoustic surface backscatter in the ocean. IEEE Journal of Oceanic Engineering, 23(2):81-95. ![]() [24]Pan T, 2013. Non-steady Aerodynamic Force Models of Bridge and Analysis on Wind-induced Vibration. PhD Thesis, Tongji University, Shanghai, China (in Chinese). ![]() [25]Sankaran R, Jancauskas ED, 1992. Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 41(1-3):601-611. ![]() [26]Scanlan RH, 1978a. The action of flexible bridges under wind, I: flutter theory. Journal of Sound and Vibration, 60(2):187-199. ![]() [27]Scanlan RH, 1978b. The action of flexible bridges under wind, II: buffeting theory. Journal of Sound and Vibration, 60(2):201-211. ![]() [28]Scanlan RH, Jones NP, 1999. A form of aerodynamic admittance for use in bridge aeroelastic analysis. Journal of Fluids and Structures, 13(7-8):1017-1027. ![]() [29]Walshe DE, Wyatt TA, 1983. Measurement and application of the aerodynamic admittance function for a box-girder bridge. Journal of Wind Engineering and Industrial Aerodynamics, 14(1-3):211-222. ![]() [30]Wu T, Kareem A, 2014. Revisiting convolution scheme in bridge aerodynamics: comparison of step and impulse response functions. Journal of Engineering Mechanics, 140(5):04014008. ![]() [31]Xu K, Zhao L, Cao SY, et al., 2014. Investigation of spatial coherences of aerodynamic loads on a streamlined bridge deck in an actively-controlled wind tunnel. Advances in Structural Engineering, 17(1):53-65. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


Open peer comments: Debate/Discuss/Question/Opinion
<1>