
CLC number: TU311.4; U448.25
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-15
Cited: 0
Clicked: 6101
Lin-ren Zhou, Lan Chen, Yong Xia, Ki Young Koo. Temperature-induced structural static responses of a long-span steel box girder suspension bridge[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1900490 @article{title="Temperature-induced structural static responses of a long-span steel box girder suspension bridge", %0 Journal Article TY - JOUR
大跨度钢箱梁悬索桥温度所致结构静力响应创新点:1. 基于数值方法对比大跨度悬索桥温度静力效应与设计车荷载效应,评估温度效应的影响; 2. 阐明悬索桥主要构件温度效应对总体温度效应的贡献及相互之间的影响. 方法:1. 建立现场环境和结构响应的结构健康监测系统,并进行长期监测; 2. 通过精细化有限元分析方法实现桥梁温度荷载和温度效应的精准数值计算. 结论:1. 温度对大跨度悬索桥跨中位移的影响明显,其一天的变化约是设计车荷载位移的10%; 箱型主梁横向温差是导致桥面横向倾斜的主要因素. 2. 箱梁温度应力显著大于车荷载引起的应力; 部分次要构件的温度应力成为主要荷载效应. 3. 主缆竖向倾角越大,温度应力越大; 吊杆温度效应主要受其长度和两端相对变形的影响. 4. 桥塔温度效应不仅受其自身温度的影响,也会受到来自主缆温度响应的较大影响. 5. 本文结论是基于一天温度变化的影响,而温度效应在更大时间尺度上的影响会更为严重. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BSI (British Standards Institution), 2006. Steel, Concrete and Composite Bridges–Part 2: Specification for Loads, BS 5400-2:2006. BSI, London, UK. ![]() [2]Chen L, Liang CF, Huang ZG, et al., 2017. Numerical simulation on the temperature behavior of the main cable for suspension bridge. Health Monitoring of Structural and Biological Systems, 10170:1017038. ![]() [3]Deng Y, Ding YL, Li AQ, 2010. Structural condition assessment of long-span suspension bridges using long-term monitoring data. Earthquake Engineering and Engineering Vibration, 9(1):123-131. ![]() [4]Dilger WH, Ghali A, Chan M, et al., 1983. Temperature stresses in composite box girder bridges. Journal of Structural Engineering, 109(6):1460-1478. ![]() [5]Duan YF, Li Y, Xiang YQ, 2011. Strain-temperature correlation analysis of a tied arch bridge using monitoring data. Proceedings of the International Conference on Multimedia Technology, p.6025-6028. ![]() [6]Elbadry MM, Ghali A, 1983. Temperature variations in concrete bridges. Journal of Structural Engineering, 109(10):2355-2374. ![]() [7]Emerson M, 1973. The Calculation of the Distribution of Temperature in Bridges. Technical Report No. LR 561, Transport and Road Research Laboratory, Berkshire, UK. ![]() [8]Emerson M, 1979. Bridge Temperatures for Setting Bearings and Expansion Joints. Technical Report No. SR 479, Transport and Road Research Laboratory, Wokingham, UK. ![]() [9]Fisher D, 1982. Design and construction of the Humber Bridge. Physics Education, 17(5):198-202. ![]() [10]Fujino Y, Murata M, Okano S, et al., 2000. Monitoring system of the Akashi Kaikyo Bridge and displacement measurement using GPS. Proceedings of SPIE’s 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure, p.229-236. ![]() [11]Huang XH, Dyke S, Xu ZD, 2015. An in-time damage identification approach based on the Kalman filter and energy equilibrium theory. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(2):105-116. ![]() [12]Hunt B, Cooke N, 1975. Thermal calculations for bridge design. Journal of the Structural Division, 101(4):1763-1781. ![]() [13]Kehlbeck F, 1975. Einfluss der Sonnenstrahlung bei Brückenbauwerken. Werner-Verlag, Düsseldorf, Germany (in German). ![]() [14]Kennedy JB, Soliman MH, 1987. Temperature distribution in composite bridges. Journal of Structural Engineering, 113(3):65-78. ![]() [15]Kromanis R, Kripakaran P, 2017. Data-driven approaches for measurement interpretation: analysing integrated thermal and vehicular response in bridge structural health monitoring. Advanced Engineering Informatics, 34:46-59. ![]() [16]Kromanis R, Kripakaran P, Harvey B, 2016. Long-term structural health monitoring of the Cleddau Bridge: evaluation of quasi-static temperature effects on bearing movements. Structure and Infrastructure Engineering, 12(10):1342-1355. ![]() [17]Mirambell E, Aguado A, 1990. Temperature and stress distributions in concrete box girder bridges. Journal of Structural Engineering, 116(9):2388-2409. ![]() [18]Moorty S, Roeder CW, 1992. Temperature-dependent bridge movements. Journal of Structural Engineering, 118(4):1090-1105. ![]() [19]Ni YQ, Hua XG, Wong KY, et al., 2007. Assessment of bridge expansion joints using long-term displacement and temperature measurement. Journal of Performance of Constructed Facilities, 21(2):143-151. ![]() [20]Ou JP, Li H, 2010. Structural health monitoring in mainland China: review and future trends. Structural Health Monitoring, 9(3):219-231. ![]() [21]Priestley MJN, 1976. Design thermal gradients for concrete bridges. New Zealand Engineering, 31(9):213-219. ![]() [22]Priestley MJN, 1978. Design of concrete bridges for temperature gradients. Journal of American Concrete Institute, 75(5):209-217. ![]() [23]Roberts-Wollman CL, Breen JE, Cawrse J, 2002. Measurements of thermal gradients and their effects on segmental concrete bridge. Journal of Bridge Engineering, 7(3):166-174. ![]() [24]Roeder CW, 2003. Proposed design method for thermal bridge movements. Journal of Bridge Engineering, 8(1):12-19. ![]() [25]Salawu OS, 1997. Detection of structural damage through changes in frequency: a review. Engineering Structures, 19(9):718-723. ![]() [26]Tayşi N, Abid S, 2015. Temperature distributions and variations in concrete box-girder bridges: experimental and finite element parametric studies. Advances in Structural Engineering, 18(4):469-486. ![]() [27]Tomé ES, Pimentel M, Figueiras J, 2018. Structural response of a concrete cable-stayed bridge under thermal loads. Engineering Structures, 176:652-672. ![]() [28]Tong M, Tham LG, Au FTK, et al., 2001. Numerical modelling for temperature distribution in steel bridges. Computers & Structures, 79(6):583-593. ![]() [29]Wang GX, Ding YL, Sun P, et al., 2015. Assessing static performance of the Dashengguan Yangtze Bridge by monitoring the correlation between temperature field and its static strains. Mathematical Problems in Engineering, 2015:946907. ![]() [30]Wang QW, Zhong DH, Wu BP, et al., 2018. Construction simulation approach of roller-compacted concrete dam based on real-time monitoring. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(5):367-383. ![]() [31]Westgate R, Koo KY, Brownjohn J, 2015. Effect of solar radiation on suspension bridge performance. Journal of Bridge Engineering, 20(5):04014077. ![]() [32]Xia Q, Cheng YY, Zhang J, et al., 2017. In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. Journal of Bridge Engineering, 22(3):04016124. ![]() [33]Xia Y, Chen B, Zhou XQ, et al., 2013. Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Structural Control and Health Monitoring, 20(4):560-575. ![]() [34]Xu YL, Chen B, Ng CL, et al., 2010. Monitoring temperature effect on a long suspension bridge. Structural Control and Health Monitoring, 17(6):632-653. ![]() [35]Yang DH, Yi TH, Li HN, et al., 2018. Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge. Measurement, 115:249-257. ![]() [36]Zhang XS, Chen JQ, Wei JH, 2019. Condition-based scheduled maintenance optimization of structures based on reliability requirements under continuous degradation and random shocks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(4):272-289. ![]() [37]Zhou GD, Yi TH, 2013. Thermal load in large-scale bridges: a state-of-the-art review. International Journal of Distributed Sensor Networks, 9(12):217983. ![]() [38]Zhou GD, Yi TH, Chen B, et al., 2018. Modeling deformation induced by thermal loading using long-term bridge monitoring data. Journal of Performance of Constructed Facilities, 32(3):04018011. ![]() [39]Zhou LR, Xia Y, Brownjohn JMW, et al., 2016. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation. Journal of Bridge Engineering, 21(1):04015027. ![]() [40]Zhou Y, Sun LM, 2019. A comprehensive study of the thermal response of a long-span cable-stayed bridge: from monitoring phenomena to underlying mechanisms. Mechanical Systems and Signal Processing, 124:330-348. ![]() [41]Zhu JS, Meng QL, 2017. Effective and fine analysis for temperature effect of bridges in natural environments. Journal of Bridge Engineering, 22(6):04017017. ![]() [42]Zuk W, 1965. Thermal behavior of composite bridges-insulated and uninsulated. Highway Research Record, (76):231-253. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>