CLC number: V231.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-08-06
Cited: 0
Clicked: 3946
Citations: Bibtex RefMan EndNote GB/T7714
Wen-xin Hou, Jun-tao Chang, Chen Kong, Wen Bao, Laurent Dala. Experimental study and analysis of shock train self-excited oscillation in an isolator with background waves[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000042 @article{title="Experimental study and analysis of shock train self-excited oscillation in an isolator with background waves", %0 Journal Article TY - JOUR
带有背景波系的隔离段内激波串自激振荡的实验研究与分析创新点:1. 从激波串结构和振荡特性两个方面揭示背景波系对激波串自激振荡的影响; 2. 获得引起激波串自激振荡的扰动来源. 方法:1. 通过实验分析,结合激波极曲线,研究背景波系引起的压力间断对激波串结构的影响; 2. 结合实验获得的激波串振荡特性以及数值模拟得到的壁面压力梯度,分析背景波系引起的压力梯度对自激振荡的影响; 3. 通过对壁面压力进行相关性分析和相位分析,获得自激振荡扰动的来源. 结论:1. 背景波系引起的压力间断导致了激波串的非对称结构; 2. 背景波系引起的壁面压力梯度影响激波串前缘的振荡范围和振荡强度; 3. 在带有背景波系的隔离段内,引起自激振荡的扰动来源于前缘激波产生的分离区内. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cai JH, Zhou J, Liu SJ, et al., 2017. Effects of dynamic backpressure on shock train motions in straight isolator. Acta Astronautica, 141:237-247. ![]() [2]Carroll BF, Dutton JC, 1990. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts. Journal of Propulsion and Power, 6(2):186-193. ![]() [3]Fiévet R, Koo H, Raman V, et al., 2017. Numerical investigation of shock-train response to inflow boundary-layer variations. AIAA Journal, 55(9):2888-2901. ![]() [4]Geerts JS, Yu KH, 2016. Shock train/boundary-layer interaction in rectangular isolators. AIAA Journal, 54(11):3450-3464. ![]() [5]Gnani F, Zare-Behtash H, Kontis K, 2016. Pseudo-shock waves and their interactions in high-speed intakes. Progress in Aerospace Sciences, 82:36-56. ![]() [6]Hou WX, Chang JT, Xie ZQ, et al., 2020. Behavior and flow mechanism of shock train self-excited oscillation influenced by background waves. Acta Astronautica, 166:29-40. ![]() [7]Huang W, Wang ZG, Pourkashanian M, et al., 2011. Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator. Acta Astronautica, 68(11-12):1669-1675. ![]() [8]Hunt RL, Gamba M, 2018. Shock train unsteadiness characteristics, oblique-to-normal transition, and three-dimensional leading shock structure. AIAA Journal, 56(4):1569-1587. ![]() [9]Ikui T, Matsuo K, Nagai M, et al., 1974. Oscillation phenomena of pseudo-shock waves. Bulletin of JSME, 17(112):1278-1285. ![]() [10]Jiao XL, Chang JT, Wang ZQ, et al., 2016. Investigation of hypersonic inlet pulse-starting characteristics at high Mach number. Aerospace Science and Technology, 58: 427-436. ![]() [11]Li N, Chang JT, Xu KJ, et al., 2017. Prediction dynamic model of shock train with complex background waves. Physics of Fluids, 29(11):116103. ![]() [12]Li N, Chang JT, Xu KJ, et al., 2018. Oscillation of the shock train in an isolator with incident shocks. Physics of Fluids, 30(11):116102. ![]() [13]Liao L, Yan L, Huang W, et al., 2018. Mode transition process in a typical strut-based scramjet combustor based on a parametric study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):431-451. ![]() [14]Lu L, Wang Y, Fan XQ, et al., 2018. Numerical investigation of shock train unsteady movement in a mixing duct. Aerospace Science and Technology, 81:375-382. ![]() [15]Matsuo K, Miyazato Y, Kim HD, 1999. Shock train and pseudo-shock phenomena in internal gas flows. Progress in Aerospace Sciences, 35(1):33-100. ![]() [16]Raj NOP, Venkatasubbaiah K, 2012. A new approach for the design of hypersonic scramjet inlets. Physics of Fluids, 24(8):086103. ![]() [17]Shi W, Chang JT, Ma JC, et al., 2019a. Path dependence characteristic of shock train in a 2D hypersonic inlet with variable background waves. Aerospace Science and Technology, 86:650-658. ![]() [18]Shi W, Chang JT, Zhang JL, et al., 2019b. Numerical investigation on the forced oscillation of shock train in hypersonic inlet with translating cowl. Aerospace Science and Technology, 87:311-322. ![]() [19]Smirnov NN, Betelin VB, Shagaliev RM, et al., 2014. Hydrogen fuel rocket engines simulation using LOGOS code. International Journal of Hydrogen Energy, 39(20):10748-10756. ![]() [20]Smirnov NN, Betelin VB, Nikitin VF, et al., 2015. Accumulation of errors in numerical simulations of chemically reacting gas dynamics. Acta Astronautica, 117:338-355. ![]() [21]Su WY, Zhang KY, 2013. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motions. Journal of Propulsion and Power, 29(6):1391-1399. ![]() [22]Su WY, Chen Y, Zhang FR, et al., 2018. Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation. Acta Astronautica, 143:147-154. ![]() [23]Sugiyama H, Takeda H, Zhang JP, et al., 1988. Locations and oscillation phenomena of pseudo-shock waves in a straight rectangular duct. JSME International Journal Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 31(1):9-15. ![]() [24]Sugiyama H, Tsujiguchi Y, Honma T, 2008. Structure and oscillation phenomena of pseudo-shock waves in a straight square duct at Mach 2 and 4. Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p.2646. ![]() [25]Tam CJ, Hsu KY, Hagenmaier M, et al., 2013. Studies of inlet distortion in a direct-connect axisymmetric scramjet isolator. Journal of Propulsion and Power, 29(6):1382-1390. ![]() [26]Tan HJ, Sun S, Huang HX, 2012. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves. Experiments in Fluids, 53(6):1647-1661. ![]() [27]Wagner JL, Yuceil KB, Valdivia A, et al., 2009. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow. AIAA Journal, 47(6):1528-1542. ![]() [28]Waltrup PJ, Billig FS, 1973. Structure of shock waves in cylindrical ducts. AIAA Journal, 11(10):1404-1408. ![]() [29]Wang CP, Cheng C, Cheng KM, et al., 2018. Unsteady behavior of oblique shock train and boundary layer interactions. Aerospace Science and Technology, 79:212-222. ![]() [30]Wen X, Liu J, Li J, et al., 2019. Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(5):347-357. ![]() [31]Xing F, Ruan C, Huang Y, et al., 2017. Numerical investigation on shock train control and applications in a scramjet engine. Aerospace Science and Technology, 60:162-171. ![]() [32]Xiong B, Wang ZG, Fan XQ, et al., 2017a. Experimental study on the flow separation and self-excited oscillation phenomenon in a rectangular duct. Acta Astronautica, 133: 158-165. ![]() [33]Xiong B, Fan XQ, Wang Y, et al., 2017b. Back-pressure effects on unsteadiness of separation shock in a rectangular duct at Mach 3. Acta Astronautica, 141:248-254. ![]() [34]Xu KJ, Chang JT, Zhou WX, et al., 2016. Mechanism and prediction for occurrence of shock-train sharp forward movement. AIAA Journal, 54(4):1403-1412. ![]() [35]Xu KJ, Chang JT, Zhou WX, et al., 2017. Mechanism of shock train rapid motion induced by variation of attack angle. Acta Astronautica, 140:18-26. ![]() [36]Xu KJ, Chang JT, Li N, et al., 2018. Experimental investigation of mechanism and limits for shock train rapid forward movement. Experimental Thermal and Fluid Science, 98:336-345. ![]() [37]Yamane R, Kondo E, Tomita Y, et al., 1984. Vibration of pseudo-shock in straight duct: 1st report, fluctuation of static pressure. Bulletin of JSME, 27(229):1385-1392. ![]() [38]Zhang TT, Wang ZG, Huang W, et al., 2019. The overall layout of rocket-based combined-cycle engines: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(3):163-183. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>