Full Text:  <2382>

Suppl. Mater.: 

Summary:  <1832>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-01-20

Cited: 0

Clicked: 3725

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qi-yin Zhu

https://orcid.org/0000-0002-7458-2520

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Thermal strain response of saturated clays in 1D condition


Author(s):  Qi-yin Zhu, Tian-yu Zhao, Pei-zhi Zhuang

Affiliation(s):  State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China; more

Corresponding email(s):  qiyin.zhu@cumt.edu.cn

Key Words:  Thermal strain response; Saturated clay; Thermoplasticity


Share this article to: More <<< Previous Paper|Next Paper >>>


Abstract: 
The main purpose of this study is to interpret the thermoplastic volumetric response of saturated clay during heating and cooling based on thermoplasticity. A two-yield-surface model for describing the thermo-mechanical behavior of both normally consolidated and overconsolidated saturated clay is proposed. Compared with similar existing models, the novelty of the proposed model lies mainly in two aspects: (a) a new equation directly expressing the thermoplastic strain with one additional parameter is proposed which is related to the stress condition and temperature increment; (b) a newly defined coupling mechanism of thermal and mechanical surfaces is used which is more concise. The capabilities of the proposed models to describe the observed experimental behavior were analyzed by predicting the thermal deformation of illite clay and loess suffering thermomechanical loading. Specifically, the accumulated volumetric strains in 1D conditions after multiple heating and cooling cycles were simulated and discussed.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE