CLC number: TN75
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-01-14
Cited: 0
Clicked: 3489
Jerzy Wojewoda, Karthikeyan Rajagopal, Viet-Thanh Pham, Fatemeh Parastesh, Tomasz Kapitaniak, Sajad Jafari. Chimera state in a network of nonlocally coupled impact oscillators[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000205 @article{title="Chimera state in a network of nonlocally coupled impact oscillators", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abrams DM, Strogatz SH, 2004. Chimera states for coupled oscillators. Physical Review Letters, 93(17):174102. ![]() [2]Arenas A, Díaz-Guilera A, Kurths J, et al., 2008. Synchronization in complex networks. Physics Reports, 469(3):93-153. ![]() [3]Banerjee S, Ing J, Pavlovskaia E, et al., 2009. Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. Physical Review E, 79(3):037201. ![]() [4]Bera BK, Ghosh D, Banerjee T, 2016. Imperfect traveling chimera states induced by local synaptic gradient coupling. Physical Review E, 94(1):012215. ![]() [5]Bera BK, Majhi S, Ghosh D, et al., 2017. Chimera states: effects of different coupling topologies. EPL (Europhysics Letters), 118(1):10001. ![]() [6]Bera BK, Rakshit S, Ghosh D, et al., 2019. Spike chimera states and firing regularities in neuronal hypernetworks. Chaos, 29(5):053115. ![]() [7]Blazejczyk-Okolewska B, Kapitaniak T, 1998. Co-existing attractors of impact oscillator. Chaos, Solitons & Fractals, 9(8):1439-1443. ![]() [8]Dudkowski D, Maistrenko Y, Kapitaniak T, 2016. Occurrence and stability of chimera states in coupled externally excited oscillators. Chaos, 26(11):116306. ![]() [9]Dudkowski D, Czolczynski K, Kapitaniak T, 2019. Traveling chimera states for coupled pendula. Nonlinear Dynamics, 95(3):1859-1866. ![]() [10]Hart JD, Bansal K, Murphy TE, et al., 2016. Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos, 26(9):094801. ![]() [11]Ing J, Pavlovskaia E, Wiercigroch M, et al., 2010. Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing. Physica D: Nonlinear Phenomena, 239(6):312-321. ![]() [12]Kapitaniak M, Lazarek M, Nielaczny M, et al., 2014. Synchronization extends the life time of the desired behavior of globally coupled systems. Scientific Reports, 4(1):4391. ![]() [13]Kapitaniak T, Kuzma P, Wojewoda J, et al., 2014. Imperfect chimera states for coupled pendula. Scientific Reports, 4(1):6379. ![]() [14]Kundu S, Bera BK, Ghosh D, et al., 2019. Chimera patterns in three-dimensional locally coupled systems. Physical Review E, 99(2):022204. ![]() [15]Kuramoto Y, Battogtokh D, 2002. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena in Complex Systems, 5(4):380-385. ![]() [16]Lee JY, 2005. Motion behavior of impact oscillator. Journal of Marine Science and Technology, 13(2):89-96. ![]() [17]Lee JY, Yan JJ, 2006. Control of impact oscillator. Chaos, Solitons & Fractals, 28(1):136-142. ![]() [18]Liu YJ, Khalaf AJM, Jafari S, et al., 2019. Chimera state in a two-dimensional network of coupled genetic oscillators. EPL (Europhysics Letters), 127(4):40001. ![]() [19]Ma J, Xu Y, Ren GD, et al., 2016. Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dynamics, 84(2):497-509. ![]() [20]Maistrenko Y, Brezetsky S, Jaros P, et al., 2017. Smallest chimera states. Physical Review E, 95(1):010203. ![]() [21]Majhi S, Perc M, Ghosh D, 2016. Chimera states in uncoupled neurons induced by a multilayer structure. Scientific Reports, 6(1):39033. ![]() [22]Majhi S, Bera BK, Ghosh D, et al., 2019. Chimera states in neuronal networks: a review. Physics of Life Reviews, 28:100-121. ![]() [23]Martens EA, Thutupalli S, Fourriere A, et al., 2013. Chimera states in mechanical oscillator networks. Proceedings of the National Academy of Sciences of the United States of America, 110(26):10563-10567. ![]() [24]Omelchenko I, Provata A, Hizanidis J, et al., 2015. Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Physical Review E, 91(2):022917. ![]() [25]Panaggio MJ, Abrams DM, Ashwin P, et al., 2016. Chimera states in networks of phase oscillators: the case of two small populations. Physical Review E, 93(1):012218. ![]() [26]Pavlovskaia E, Ing J, Wiercigroch M, et al., 2010. Complex dynamics of bilinear oscillator close to grazing. International Journal of Bifurcation and Chaos, 20(11):3801-3817. ![]() [27]Pham VT, Volos C, Jafari S, et al., 2014. Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24(5):1450073. ![]() [28]Rakshit S, Bera BK, Perc M, et al., 2017. Basin stability for chimera states. Scientific Reports, 7(1):2412. ![]() [29]Suda Y, Okuda K, 2015. Persistent chimera states in nonlocally coupled phase oscillators. Physical Review E, 92(6):060901. ![]() [30]Tang J, Zhang J, Ma J, et al., 2019. Noise and delay sustained chimera state in small world neuronal network. Science China Technological Sciences, 62(7):1134-1140. ![]() [31]Tinsley MR, Nkomo S, Showalter K, 2012. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nature Physics, 8(9):662-665. ![]() [32]Vadivasova TE, Strelkova GI, Bogomolov SA, et al., 2016. Correlation analysis of the coherence-incoherence transition in a ring of nonlocally coupled logistic maps. Chaos, 26(9):093108. ![]() [33]Wang CN, Ma J, 2018. A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 32(06):1830003. ![]() [34]Wang Z, Baruni S, Parastesh F, et al., 2020. Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity. Neurocomputing, 406:117-126. ![]() [35]Wei ZC, Sprott JC, Chen H, 2015a. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Physics Letters A, 379(37):2184-2187. ![]() [36]Wei ZC, Zhang W, Yao MH, 2015b. On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system. Nonlinear Dynamics, 82(3):1251-1258. ![]() [37]Wei ZC, Pham VT, Kapitaniak T, et al., 2016. Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors. Nonlinear Dynamics, 85(3):1635-1650. ![]() [38]Wei ZC, Moroz I, Sprott JC, et al., 2017a. Detecting hidden chaotic regions and complex dynamics in the selfexciting homopolar disc dynamo. International Journal of Bifurcation and Chaos, 27(2):1730008. ![]() [39]Wei ZC, Moroz I, Sprott JC, et al., 2017b. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos, 27(3):033101. ![]() [40]Wei ZC, Pham VT, Khalaf AJM, et al., 2018a. A modified multistable chaotic oscillator. International Journal of Bifurcation and Chaos, 28(7):1850085. ![]() [41]Wei ZC, Parastesh F, Azarnoush H, et al., 2018b. Nonstationary chimeras in a neuronal network. EPL (Europhysics Letters), 123(4):48003. ![]() [42]Wiercigroch M, Sin VWT, 1998. Experimental study of a symmetrical piecewise base-excited oscillator. Journal of Applied Mechanics, 65(3):657-663. ![]() [43]Yao YG, Deng HY, Yi M, et al., 2017. Impact of bounded noise on the formation and instability of spiral wave in a 2D lattice of neurons. Scientific Reports, 7(1):43151. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>