CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-11-16
Cited: 0
Clicked: 3283
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-9233-1354
Georges Kouroussis, Sheng-yang Zhu, Konstantinos Vogiatzis. Noise and vibration from transportation[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A20NVT01 @article{title="Noise and vibration from transportation", %0 Journal Article TY - JOUR
Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alexandrou G, Kouroussis G, Verlinden O, 2016. A comprehensive prediction model for vehicle/track/soil dynamic response due to wheel flats. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4):1088-1104. ![]() [2]Auersch L, Said S, 2019. Measurement of slab track behaviour at different sites. Proceedings of the 26th International Congress on Sound and Vibration. ![]() [3]Auersch L, Said S, 2021. Dynamic track-soil interaction— calculations and measurements of slab and ballast tracks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(1):21-36. ![]() [4]Connolly DP, Marecki G, Kouroussis G, et al., 2016. The growth of railway ground vibration problems—a review. Science of the Total Environment, 568:1276-1282. ![]() [5]Garg VK, Dukkipati RV, 1984. Dynamics of Railway Vehicle Systems. Academic Press, Toronto, Canada. ![]() [6]Kaewunruen S, Martin V, 2018. Life cycle assessment of railway ground-borne noise and vibration mitigation methods using geosynthetics, metamaterials and ground improvement. Sustainability, 10(10):3753. ![]() [7]Kouroussis G, Conti C, Verlinden O, 2014. Building vibrations induced by human activities: a benchmark of existing standards. Mechanics & Industry, 15(5):345-353. ![]() [8]Kouroussis G, Connolly DP, Alexandrou G, et al., 2015. The effect of railway local irregularities on ground vibration. Transportation Research Part D: Transport and Environment, 39:17-30. ![]() [9]Kouroussis G, Zhu SY, Olivier B, et al., 2019. Urban railway ground vibrations induced by localized defects: using dynamic vibration absorbers as amitigation solution. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(2):83-97. ![]() [10]Krylov V, Ferguson C, 1994. Calculation of low-frequency ground vibrations from railway trains. Applied Acoustics, 42(3):199-213. ![]() [11]Lyratzakis A, Tsompanakis Y, Psarropoulos PN, 2020. Efficient mitigation of high-speed trains induced vibrations of railway embankments using expanded polystyrene blocks. Transportation Geotechnics, 22:100312. ![]() [12]Lyratzakis A, Tsompanakis Y, Psarropoulos PN, 2021. Mitigation of high-speed trains vibrations by expanded polystyrene blocks in railway embankments. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(1):6-20. ![]() [13]Olivier B, Connolly DP, Costa PA, et al., 2016. The effect of embankment on high speed rail ground vibrations. International Journal of Rail Transportation, 4(4):229-246. ![]() [14]Thompson D, 2009. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Oxford, UK. ![]() [15]Thompson DJ, Kouroussis G, Ntotsios E, 2019. Modelling, simulation and evaluation of ground vibration caused by rail vehicles. Vehicle System Dynamics, 57(7):936-983. ![]() [16]Vogiatzis K, Kouroussis G, 2015. Prediction and efficient control of vibration mitigation using floating slabs: practical application at Athens metro lines 2 and 3. International Journal of Rail Transportation, 3(4):215-232. ![]() [17]Vogiatzis K, Kouroussis G, 2017a. Airborne and ground borne noise and vibration from urban rail transit systems. In: Yaghoubi H (Ed.), Urban Transport Systems. InTechOpen, p.61-87. ![]() [18]Vogiatzis K, Kouroussis G, 2017b. Environmental ground-borne noise and vibration from urban light rail transportation during construction and operation. Current Pollution Reports, 3(2):162-173. ![]() [19]Yang JJ, Zhu SY, Zhai WM, et al., 2019. Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel. Science of the Total Environment, 668:485-499. ![]() [20]Zhai WM, Sun X, 1994. A detailed model for investigating vertical interaction between railway vehicle and track. Vehicle System Dynamics, 23(S1):603-615. ![]() [21]Zhang YF, Li J, Chen ZW, et al., 2019. Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing. Wind and Structures, 29(5):299-312. ![]() [22]Zhang YF, Li L, Lei ZY, et al., 2021. Environmental noise beside an elevated box girder bridge for urban rail transit. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(1):53-69. ![]() [23]Zhao ZM, Wei K, Ren JJ, et al., 2021. Vibration response analysis of floating slab track supported by nonlinear quasi-zero-stiffness vibration isolators. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(1):37-52. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>