CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4487
Xiao-xiao SUN, Xiang-yu CHEN, Xiao-ming GUO. A novel multi-level model for quasi-brittle cracking analysis with complex microstructure[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100158 @article{title="A novel multi-level model for quasi-brittle cracking analysis with complex microstructure", %0 Journal Article TY - JOUR
用于复杂微观结构准脆性开裂分析的创新多层级模型创新点:1.建立了材料粒子边界位移为基本未知量的全局控制方程,避免了全局层级材料粒子内部复杂状态的讨论;2.将具有连续台阶的富集函数用于描述粒子边界的开裂位移,可以得到先验未知解;3.建立了控制单元状态的补充方程,使全局模型的自由度数稳定在低水平;4.实现了代表性体积元(RVE)的退出,进而将模型整体的自由度数控制在稳定的低水平;5.裂纹带可以在任意位置进入和离开材料粒子。 方法:1.采用多层级信息传递方法建立模型;2.采用单位分解法的思想对材料粒子边界位移进行近似。 结论:1.实现了计算过程中RVE的动态激活和退出,大大降低了整个模型的自由度数;2.模型的模拟结果与完全微观模型及实验的结果一致,说明本文所提出的模型具有较高的计算精度。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbbasAA, MohsinSMS, CotsovosDM, 2016. A simplified finite element model for assessing steel fibre reinforced concrete structural performance. Computers & Structures, 173:31-49. ![]() [2]BelytschkoT, LiuWK, MoranB, et al., 2014. Nonlinear Finite Elements for Continua and Structures, 2nd Edition. John Wiley & Sons Inc, Chichester, UK. ![]() [3]BerkePZ, PeerlingsRHJ, MassartTJ, et al., 2014. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials. Computational Mechanics, 53(5):909-923. ![]() [4]BiswasR, ShedbaleAS, PohLH, 2019. Nonlinear analyses with a micromorphic computational homogenization framework for composite materials. Computer Methods in Applied Mechanics and Engineering, 350:362-395. ![]() [5]ChaudhuriP, 2013. Multi-scale modeling of fracture in concrete composites. Composites Part B: Engineering, 47:162-172. ![]() [6]CoenenEWC, KouznetsovaVG, BoscoE, et al., 2012. A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. International Journal of Fracture, 178(1):157-178. ![]() [7]ContrafattoL, CuomoM, 2007. Comparison of two forms of strain decomposition in an elastic-plastic damaging model for concrete. Modelling and Simulation in Materials Science and Engineering, 15(4):S405-S423. ![]() [8]DascaluC, FrançoisB, KeitaO, 2010. A two-scale model for subcritical damage propagation. International Journal of Solids and Structures, 47(3-4):493-502. ![]() [9]DuttaS, KishenJMC, 2018. Progressive damage through interface microcracking in cementitious composites: a micromechanics based approach. International Journal of Solids and Structures, 150:230-240. ![]() [10]FengXQ, YuSW, 2010. Damage micromechanics for constitutive relations and failure of microcracked quasi-brittle materials. International Journal of Damage Mechanics, 19(8):911-948. ![]() [11]GhoshA, ChaudhuriP, 2013. Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method. Computational Materials Science, 69:204-215. ![]() [12]GhoshS, BaiJ, RaghavanP, 2007. Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mechanics of Materials, 39(3):241-266. ![]() [13]GitmanIM, AskesH, SluysLJ, 2008. Coupled-volume multi-scale modelling of quasi-brittle material. European Journal of Mechanics–A/Solids, 27(3):302-327. ![]() [14]GrecoF, LeonettiL, LucianoR, 2015. A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete. Construction and Building Materials, 95:860-874. ![]() [15]GuidaultPA, AllixO, ChampaneyL, et al., 2007. A two-scale approach with homogenization for the computation of cracked structures. Computers & Structures, 85(17-18):1360-1371. ![]() [16]GuoLP, CarpinteriA, RoncellaR, et al., 2009. Fatigue damage of high performance concrete through a 2D mesoscopic lattice model. Computational Materials Science, 44(4):1098-1106. ![]() [17]HäfnerS, EckardtS, LutherT, et al., 2006. Mesoscale modeling of concrete: geometry and numerics. Computers & Structures, 84(7):450-461. ![]() [18]HanganuAD, OñateE, BarbatAH, 2002. A finite element methodology for local/global damage evaluation in civil engineering structures. Computers & Structures, 80(20-21):1667-1687. ![]() [19]HeB, SchulerL, NewellP, 2020. A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media. Computational Materials Science, 176:109519. ![]() [20]JirásekM, BauerM, 2012. Numerical aspects of the crack band approach. Computers & Structures, 110-111:60-78. ![]() [21]JouanG, KotronisP, CollinF, 2014. Using a second gradient model to simulate the behaviour of concrete structural elements. Finite Elements in Analysis and Design, 90:50-60. ![]() [22]KimK, BolanderJE, LimYM, 2013. Failure simulation of RC structures under highly dynamic conditions using random lattice models. Computers & Structures, 125:127-136. ![]() [23]KouznetsovaV, BrekelmansWAM, BaaijensFPT, 2001. An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27(1):37-48. ![]() [24]KulkarniMG, MatoušK, GeubellePH, 2010. Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives. International Journal for Numerical Methods in Engineering, 84(8):916-946. ![]() [25]LiTC, LyuLX, ZhangSL, et al., 2015. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(8):644-655. ![]() [26]LiXF, ZhangQB, LiHB, et al., 2018. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mechanics and Rock Engineering, 51(12):3785-3817. ![]() [27]LiZX, ZhouTQ, ChanTHT, et al., 2007. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges. Engineering Structures, 29(7):1507-1524. ![]() [28]LiZX, ChanTHT, YuY, et al., 2009. Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration—Part I: modeling methodology and strategy. Finite Elements in Analysis and Design, 45(11):782-794. ![]() [29]LiangSX, RenXD, LiJ, 2018. A mesh-size-objective modeling of quasi-brittle material using micro-cell informed damage law. International Journal of Damage Mechanics, 27(6):913-936. ![]() [30]LiuJX, ZhaoZY, DengSC, et al., 2009. Numerical investigation of crack growth in concrete subjected to compression by the generalized beam lattice model. Computational Mechanics, 43(2):277-295. ![]() [31]Lloberas-VallsO, RixenDJ, SimoneA, et al., 2011. Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 200(13-16):1577-1590. ![]() [32]MaR, SunWC, 2020. FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials. Computer Methods in Applied Mechanics and Engineering, 362:112781. ![]() [33]MacriM, DeS, 2008. An octree partition of unity method (OctPUM) with enrichments for multiscale modeling of heterogeneous media. Computers & Structures, 86(7-8):780-795. ![]() [34]NezhadMM, ZhuHH, JuJW, et al., 2016. A simplified multiscale damage model for the transversely isotropic shale rocks under tensile loading. International Journal of Damage Mechanics, 25(5):705-726. ![]() [35]NguyenVP, Lloberas-VallsO, StroevenM, et al., 2011. Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1220-1236. ![]() [36]RodriguesEA, ManzoliOL, Bitencourt JrLAG, et al., 2016. 2D mesoscale model for concrete based on the use of interface element with a high aspect ratio. International Journal of Solids and Structures, 94-95:112-124. ![]() [37]ShahbeykS, HosseiniM, YaghoobiM, 2011. Mesoscale finite element prediction of concrete failure. Computational Materials Science, 50(7):1973-1990. ![]() [38]ShenJ, MaoJH, BoileauJ, et al., 2014. Material damage evaluation with measured microdefects and multiresolution numerical analysis. International Journal of Damage Mechanics, 23(4):537-566. ![]() [39]SunB, LiZX, 2015. Adaptive concurrent multi-scale FEM for trans-scale damage evolution in heterogeneous concrete. Computational Materials Science, 99:262-273. ![]() [40]SunB, LiZX, 2016a. Adaptive concurrent three-level multiscale simulation for trans-scale process from material mesodamage to structural failure of concrete structures. International Journal of Damage Mechanics, 25(5):750-769. ![]() [41]SunB, LiZX, 2016b. Adaptive mesh refinement FEM for seismic damage evolution in concrete-based structures. Engineering Structures, 115:155-164. ![]() [42]SunB, LiZX, 2016c. Multi-scale modeling and trans-level simulation from material meso-damage to structural failure of reinforced concrete frame structures under seismic loading. Journal of Computational Science, 12:38-50. ![]() [43]SunXX, GuoXM, 2019. Domain information transfer method and its application in quasi-brittle failure analysis. Advances in Mechanical Engineering, 11(12):1-19. ![]() [44]SunXX, GuoXM, GuoL, et al., 2020. Multiscale analysis of concrete damage and crack propagation under high cycle loading. International Journal of Computational Methods, 17(1):1844007. ![]() [45]WangZ, JinXY, JinNG, et al., 2014. Cover cracking model in reinforced concrete structures subject to rebar corrosion. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(7):496-507. ![]() [46]WriggersP, MoftahSO, 2006. Mesoscale models for concrete: homogenisation and damage behaviour. Finite Elements in Analysis and Design, 42(7):623-636. ![]() [47]WuJY, 2018. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 328:612-637. ![]() [48]XuQ, ChenJY, LiJ, et al., 2014. A study on the contraction joint element and damage constitutive model for concrete arch dams. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(3):208-218. ![]() [49]ZhangFS, DamjanacB, MaxwellS, 2019. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling. Rock Mechanics and Rock Engineering, 52(12):5137-5160. ![]() [50]ZhangNL, GuoXM, ZhuBB, et al., 2012. A mesoscale model based on Monte-Carlo method for concrete fracture behavior study. Science China Technological Sciences, 55(12):3278-3284. ![]() [51]ZhouXQ, HaoH, 2008. Mesoscale modelling of concrete tensile failure mechanism at high strain rates. Computers & Structures, 86(21-22):2013-2026. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>