CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-11-28
Cited: 0
Clicked: 2790
Gang ZHENG, Jing-bo TONG, Tian-qi ZHANG, Zi-wu WANG, Xun LI, Ji-qing ZHANG, Chun-yu QI, Hai-zuo ZHOU, Yu DIAO. Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100686 @article{title="Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell", %0 Journal Article TY - JOUR
采用赫尔-肖氏薄板开展向源侵蚀过程的动态可视化研究机构:1天津大学,滨海土木工程结构与安全教育部重点实验室,中国天津,300072;2天津大学,理学院,中国天津,300072;3中国铁路设计集团,中国天津,300308;4城市轨道交通数字化建设与测评技术国家工程实验室,中国天津,300308 目的:粉土、粉(细)砂土承压含水层中的盾构隧道出现渗漏时,土颗粒会在渗流力作用下液化悬浮并随地下水涌入隧道,致使隧道外土层在高速水流侵蚀下快速流失,引起隧道受力模式改变,进而造成衬砌结构的连续破坏(损)甚至垮塌。特别地,当渗漏点位于隧道底部时,侵蚀过程类似于水利大坝中的向源侵蚀,即逆着水流方向在隧道结构底部产生侵蚀空腔,从而导致隧道底部因失去土层支撑而产生大范围沉降和错台。为研究盾构隧道结构底部某点处由径向水流(水流向漏点汇聚)引起的向源侵蚀过程及侵蚀区形态,本文采用物理学中的经典装置,即赫尔-肖氏薄板,开展一系列可视化的模型试验,研究了水流速度及试样厚度对侵蚀过程及侵蚀形态的影响,以加深对向源侵蚀机制的理解。 创新点:1.研制了用于研究汇聚流下向源侵蚀过程的赫尔-肖氏薄板仪器;2.清晰地捕捉了向源侵蚀动态发展过程;3.揭示水流速度及试样厚度对侵蚀过程及侵蚀形态的影响。 方法:1.采用恒流速试验,模拟瞬间施加水流下的向源侵蚀过程;2.通过数字图像处理技术,定量描述向源侵蚀动态发展过程;3.通过调整板间距及入流速度,分析试样厚度及水流大小对侵蚀过程及形态的影响。 结论:1.瞬时恒流下的向源侵蚀过程可分为侵蚀发展和侵蚀稳定两个阶段。2.瞬时水流速度越大,侵蚀区的形状表现为分叉越多,最大侵蚀半径越大。3.试样越厚,向源侵蚀越容易在赫尔-肖氏薄板中启动;同时侵蚀区面积越大,半径也越大。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AkramiS, BezuijenA, van BeekV, et al., 2021. Analysis of development and depth of backward erosion pipes in the presence of a coarse sand barrier. Acta Geotechnica, 16(2):381-397. ![]() [2]Al-HousseinyTT, TsaiPA, StoneHA, 2012. Control of interfacial instabilities using flow geometry. Nature Physics, 8(10):747-750. ![]() [3]ChengX, XuL, PattersonA, et al., 2008. Towards the zero-surface-tension limit in granular fingering instability. Nature Physics, 4(3):234-237. ![]() [4]Hele-ShawHS, 1898. The flow of water. Nature, 58(1489):34-36. ![]() [5]HoltzmanR, SzulczewskiML, JuanesR, 2012. Capillary fracturing in granular media. Physical Review Letters, 108(26):264504. ![]() [6]HuangHY, ZhangFS, CallahanP, et al., 2012. Granular fingering in fluid injection into dense granular media in a Hele-Shaw cell. Physical Review Letters, 108(25):258001. ![]() [7]NeyerJC, 1984. Soft ground tunnel failures in Michigan. Proceedings of the International Conference on Case Histories in Geotechnical Engineering, p.1429-1434. ![]() [8]PolJC, van KlaverenW, KanningW, et al., 2021. Progression rate of backward erosion piping: small scale experiments. Proceedings of the 10th International Conference on Scour and Erosion. ![]() [9]RiceJ, van BeekV, BezuijenA, 2021. History and future of backward erosion research. Proceedings of the 10th International Conference on Scour and Erosion, p.1-23. ![]() [10]RichardsKS, ReddyKR, 2012. Experimental investigation of initiation of backward erosion piping in soils. Géotechnique, 62(10):933-942. ![]() [11]RosenbrandE, van BeekV, BezuijenA, et al., 2022. Multi-scale experiments for a coarse sand barrier against backward erosion piping. Géotechnique, 72(3):216-226. ![]() [12]SandnesB, FlekkøyEG, KnudsenHA, et al., 2011. Patterns and flow in frictional fluid dynamics. Nature Communications, 2(1):288. ![]() [13]van BeekVM, KnoeffH, SellmeijerH, 2011. Observations on the process of backward erosion piping in small-, medium- and full-scale experiments. European Journal of Environmental and Civil Engineering, 15(8):1115-1137. ![]() [14]van BeekVM, BezuijenA, SellmeijerJB, et al., 2014. Initiation of backward erosion piping in uniform sands. Géotechnique, 64(12):927-941. ![]() [15]van BeekVM, van EssenHM, VandenboerK, 2015. Developments in modelling of backward erosion piping. Géotechnique, 65(9):740-754. ![]() [16]VandenboerK, 2019. A Study on the Mechanisms of Backward Erosion Piping. PhD Thesis, Ghent University, Ghent, the Netherland. ![]() [17]VandenboerK, van BeekVM, BezuijenA, 2018. 3D character of backward erosion piping. Géotechnique, 68(1):86-90. ![]() [18]VandenboerK, DolphenL, BezuijenA, 2019a. Backward erosion piping through vertically layered soils. European Journal of Environmental and Civil Engineering, 23(11):1404-1412. ![]() [19]VandenboerK, CeletteF, BezuijenA, 2019b. The effect of sudden critical and supercritical hydraulic loads on backward erosion piping: small-scale experiments. Acta Geotechnica, 14(3):783-794. ![]() [20]YaoQL, DingLQ, SunDY, et al., 2007. Experimental studies on piping in single- and two-stratum dike foundations. Water Resources and Hydropower Engineering, 38(2):13-18 (in Chinese). ![]() [21]ZhengG, CuiT, ChengXS, et al., 2017. Introduction and analysis of an accident in a shield tunnel. Chinese Journal of Geotechnical Engineering, 39(S2):132-135 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>