CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-11-28
Cited: 0
Clicked: 1997
Shu-jian WANG, Hong-guang JIANG, Zong-bao WANG, Yu-jie WANG, Yi-xin LI, Xue-yu GENG, Xin-yu WANG, Kai WANG, Yi-yi LIU, Yan-kun GONG. Evaluation of heavy roller compaction on a large-thickness layer of subgrade with full-scale field experiments[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200201 @article{title="Evaluation of heavy roller compaction on a large-thickness layer of subgrade with full-scale field experiments", %0 Journal Article TY - JOUR
基于全比尺现场试验的大厚度路基高能级压实效果评价机构:1山东大学,齐鲁交通学院,中国济南,250002;2山东高速工程检测有限公司,中国济南,250002;3山东高速济青中线公路有限公司,中国高密,261599;4华威大学,工程学院,英国考文垂,CV48UW;5山东高速集团有限公司,中国济南,250002 目的:本文旨在通过65cm和80cm松铺厚度路基的全比尺现场试验,提出保障大厚度路基压实效果的施工工艺和评价方法,以提高路基填筑的施工效率、降低能耗和碳排放。 创新点:1.改进适用于大厚度路基压实度评价的灌砂法;2.建立碾压轮载作用下的路基内部动态土压力计算修正方程;3.提出大厚度路基压实施工工艺及验收指标与压实度的关联关系,对大厚度路基压实质量进行可靠快速评价。 方法:1.采用改进的灌砂筒及其标定方法,对大厚度路基的压实度进行分层检测;2.基于现场土压力分层监测,获得碾压机械作用下动态土压力沿路基深度的衰减规律;3.通过对每一遍碾压后的压实度、沉降差、K30、动态回弹模量、动弯沉进行多点检测和分析,获得各物理力学指标随碾压遍数的变化规律及其相互关联关系。 结论:1.高能级压实下的65cm和80cm松铺厚度路基动土压力可达0.19~1.18 MPa和0.079~1.19 MPa,可采用修正后的Boussinesq方程表达;2.路基压实效果与应力水平和土层下部支撑密切相关,底层土体压实度提升前上层土体难以致密化;3.高能级碾压机械可保证大厚度路基全深度有效压实,且动弯沉作为大厚度路基压实质量评价指标更为可靠。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChenAJ, SuCH, TangXY, et al., 2019. Construction technology of large thickness vibratory compaction of hard rock embankment. E3S Web of Conferences, 136:04025. ![]() [2]ChenRP, ChenJM, WangHL, 2014. Recent research on the track-subgrade of high-speed railways. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(12):1034-1038. ![]() [3]ChenY, JaksaMB, KuoYL, et al., 2021. Discrete element modelling of the 4-sided impact roller. Computers and Geotechnics, 137:104250. ![]() [4]CuiXZ, 2010. Real-time diagnosis method of compaction state of subgrade during dynamic compaction. Geotechnical Testing Journal, 33(4):299-303. ![]() [5]FujyuT, SugawaraJ, TakunoH, et al., 2004. Load and deflection measurement for evaluation of ground strength with portable FWD system. Proceedings of SICE Annual Conference, p.489-492. ![]() [6]GhanbariE, HamidiA, 2014. Numerical modeling of rapid impact compaction in loose sands. Geomechanics and Engineering, 6(5):487-502. ![]() [7]KimK, ChunS, 2016. Finite element analysis to simulate the effect of impact rollers for estimating the influence depth of soil compaction. KSCE Journal of Civil Engineering, 20(7):2692-2701. ![]() [8]LiRK, CheAL, FengSK, 2020. Electrical measurement based laboratory testing method of physical properties of subgrade soil. Journal of Engineering Geology, 28(1):51-59 (in Chinese). ![]() [9]MohammedMM, RoslanH, FirasS, 2013. Assessment of rapid impact compaction in ground improvement from in-situ testing. Journal of Central South University, 20(3):786-790. ![]() [10]MooneyMA, RinehartRV, 2007. Field monitoring of roller vibration during compaction of subgrade soil. Journal of Geotechnical and Geoenvironmental Engineering, 133(3):257-265. ![]() [11]NRA (National Railway Administration of the People’s Republic of China), 2016. Code for Design of Railway Earth Structure, TB 10001-2016. National Standards of the People’s Republic of China(in Chinese). ![]() [12]SulewskaMJ, 2012. The control of soil compaction degree by means of LFWD. The Baltic Journal of Road and Bridge Engineering, 7(1):36-41. ![]() [13]VennapusaPKR, WhiteDJ, 2009. Comparison of light weight deflectometer measurements for pavement foundation materials. Geotechnical Testing Journal, 32(3):239-251. ![]() [14]VennapusaPKR, WhiteDJ, SiekmeierJ, et al., 2012. In situ mechanistic characterisations of granular pavement foundation layers. International Journal of Pavement Engineering, 13(1):52-67. ![]() [15]WersällC, LarssonS, 2013. Small-scale testing of frequency-dependent compaction of sand using a vertically vibrating plate. Geotechnical Testing Journal, 36(3):394-403. ![]() [16]WersällC, NordfeltI, LarssonS, 2017. Soil compaction by vibratory roller with variable frequency. Géotechnique, 67(3):272-278. ![]() [17]WersällC, NordfeltI, LarssonS, 2018. Resonant roller compaction of gravel in full-scale tests. Transportation Geotechnics, 14:93-97. ![]() [18]WersällC, NordfeltI, LarssonS, 2020. Roller compaction of rock-fill with automatic frequency control. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 173(4):339-347. ![]() [19]WuYH, FengYH, FanLW, et al., 2022. Effects of moisture content and dry bulk density on the thermal conductivity of compacted backfill soil. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(8):610-620. ![]() [20]XuBB, 2021. Quality inspection method of layered compacted subgrade and engineering example analysis. E3S Web of Conferences, 248:03068. ![]() [21]XuC, ChenZQ, LiJS, et al., 2014. Compaction of subgrade by high-energy impact rollers on an airport runway. Journal of Performance of Constructed Facilities, 28(5):04014021. ![]() [22]YanTH, MarasteanuM, LeJL, 2022. One-dimensional nonlocal model for gyratory compaction of hot asphalt mixtures. Journal of Engineering Mechanics, 148(2):04021144. ![]() [23]YuanGL, CheAL, FengSK, 2020. Evaluation method for the physical parameter evolutions of highway subgrade soil using electrical measurements. Construction and Building Materials, 231:117162. ![]() [24]ZhangZP, ZhouZJ, GuoT, et al., 2021. A measuring method for layered compactness of loess subgrade based on hydraulic compaction. Measurement Science and Technology, 32(5):055106. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>